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Abstract 
 
 

The fiscally constrained environment in which the Air Force executes its mission 

places great emphasis on accurate cost estimates for planning and budgeting purposes.  

Inaccurate estimates result in budget risks and undermine the ability of Air Force 

leadership to allocate resources efficiently.  This thesis evaluates the current method used 

by the Air Force and introduces new methods to forecast future Flying Hour Program 

costs.  The findings suggest the current forecasting method’s assumption of a 

proportional relationship between cost and flying hours is inappropriate and the 

relationship is actually inelastic.  Prior research has used log-linear least squares 

regression techniques to forecast Flying Hour Program cost, but has been limited by the 

occurrence of negative net costs in the underlying data.  This research uses time series 

and panel data regression techniques while controlling for flying hours, lagged costs, and 

age to create net costs models and an alternative model by separately estimating the two 

components of net costs which are charges and credits.  Finally, this research found 

neither the proportional, net costs, nor charge minus credit models is a superior 

forecaster.  As such, the models introduced in this research may be used as a cross check 

for the current method.   
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COST FORECASTING MODELS FOR THE AIR FORCE FLYING HOUR 
PROGRAM 

 
 
 
 

I:  Introduction 
 
 
 
Background 
 
 In his leadership statement, the Acting Secretary of the Air Force for Financial 

Management and Comptroller, The Honorable John G. Vonglis stated, “In a constrained 

fiscal environment, our ability to provide accurate, timely and relevant financial data, 

from cost estimates to budget projections...is paramount to enabling Air Force leadership 

at all organizational levels to make informed decisions" (2009).  Given the recent 

economic crises experienced by the U.S. and the trend of decreasing budgets experienced 

by the Air Force as a percentage of Gross Domestic Product (GDP) depicted in Figure 1, 

constrained resources are exactly what Air Force decision makers are dealing with.  

 

Figure 1:  DoD and AF Total Obligation Authority (TOA) as a Percentage of U.S GDP Over Time 
(Faykes, 2007) 
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 In addition to making decisions with limited resources, the cost of executing the 

Air Force's mission has become increasingly expensive.  In Fiscal Year 2008 readiness 

made up roughly 27 percent of the Air Force's $110.7 billion base line budget (Faykes, 

2007).  The readiness portion of the budget represents the cost to operate and maintain 

the Air Force's weapon systems.  Figure 2 breaks out Flying Hour (FH) Program, Depot 

Purchased Equipment Maintenance, and Contractor Logistic Support Cost from the 

overall readiness budgets in relation to the aircraft inventory over time.  Figure 2 clearly 

demonstrates the fact that the Air Force has been spending more money on fewer 

systems.   

 

Figure 2:  FHP, DPEM, and CLS Cost with Aircraft Inventory (Faykes, 2007) 

 In the Fiscal Year 2008 Air Force Posture Statement, then Secretary of the Air 

Force Michael W. Wynne stated that many factors ranging from increased fuel costs to an 

aging fleet have applied pressure on Air Force Budgets (Wynne and Moseley, 2008).  A 

multitude of studies have shown that the aging of the Air Force’s fleet is one of the 

reasons for Operation and Maintenance (O&M) cost growth (Hawkes and White, 2008; 

Unger, 2008; Hildebrandt and Sze, 1990).  In addition, Hawkes and White showed that 
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the variability in cost growth is larger for older airframes (2008).  This means that as 

aircraft age, predicting their operating costs becomes more difficult.  In order to maintain 

air dominance in the future and alleviate the problem of cost growth associated with 

aging aircraft, Air Force leaders have made the recapitalization and modernization of the 

Air Force’s fleet one of their top priorities. 

 The culmination of constrained budgets, growing O&M costs, and recapitalization 

and modernization efforts places a great demand on the Air Force’s financial managers to 

provide accurate cost and budget estimates.  In 2000, the GAO reported that, unlike 

Research and Development Programs, little emphasis was placed on evaluating O&M 

costs.  Given the fact that O&M costs make up such a large portion of the Air Force’s 

overall budget, we find the previous statement alarming.  Further, O&M costs represent 

the cost to fight today and are considered must pay items.  In other words, the Air Force 

must fly and maintain its airframes and pay its personnel in order to accomplish the 

current mission.  Unlike acquisition programs, these costs cannot be deferred which 

explains why resources that are originally intended for modernizing the Air Force’s fleet 

often find themselves reallocated to pay for current operations.   

 With that said, we find it imperative for financial managers to reevaluate the way 

they estimate O&M costs to identify initiatives that will allow Air Force leaders to 

manage resources better.  Underfunding programs causes the Air Force to either 

reprogram from other appropriations or ask Congress for additional funds.  On the other 

hand, overfunding programs causes limited resources to be unavailable for use in other 

potentially value adding programs.  Either way, inaccurate budget estimates create 
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funding instability which has been found to cause cost growth in acquisition programs 

(Smirnoff and Hicks, 2008).  

 
   
Purpose of This Study 
 

In this study we reevaluate the way Air Force financial managers estimate and 

budget FH Program costs.  In addition, we evaluate conflicting findings from past 

research in this same area and create econometric forecasting models to estimate future 

costs.  Improved FH Program cost models can help to reduce instability and risk inherent 

in each year’s budget and help to improve resource allocation decisions.  While, the FH 

Program is only one portion of the overall O&M budget, it is a nontrivial segment.  In 

Fiscal Year 2008, the FH Program was $7.4 billion which was 6.7 percent of that year’s 

baseline budget.  In order to assess the validity of the models currently used by the Air 

Force to estimate FH Program costs we answer the questions outlined in the following 

section.    

     Research Questions. 

1. Should forecasting models use a top-level approach in which the relationship 

between costs and its predictors are averaged across all airframe types in the 

Air Force’s fleet or estimated individually for specific airframe types?   

2. What variables are significantly related to FH Program cost and can be used to 

help estimate future costs?  

3. Due to the separate charges and credit components that comprise net cost, 

does predicting each component separately result in better forecasts than 

forecasting net cost alone?   
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4. Using our net cost models to control for other significant explanatory 

variables are flying hours and cost proportionally related such that cost 

increase by a constant factor in relation to flying hours? 

5.  Do the forecasting models we create in this study perform better than current, 

proportional models used by the Air Force?  

 
 
  
Chapter Summary   
  
 The rest of this paper is structured as follows:  Chapter II provides a review of 

past research done both on the FH Program and O&M cost in general.  In Chapter III we 

build upon the prior literature and detail the methods we implement to answer our 

research questions as well as explain the structure and source of our data.  Next, we 

present the results and analysis in Chapter IV.  Finally we summarize the results and 

provide policy implications based on our findings in Chapter V.   
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II:  Literature Review 
 
 
 

 In this chapter we provide the reader with a general overview of the Air Force’s 

FH Program.  We discuss the critical components of the method the Air Force uses to 

forecast FH Program costs.  We also offer background and general discussion on 

previous research that has either attempted to improve upon or generate new models that 

can be used to forecast O&M or FH Program specific costs.  

 
  
Flying Hour Program Overview 
 

The Air Force FH Program encompasses the in house costs associated with flying 

and maintaining its airplanes. The Air Force estimates the budget for this program using a 

proportional cost model with two primary inputs:  the number of flying hours to be flown 

and a cost per flying hour (CPFH) factor.  The product of the two inputs results in the 

expected FH Program costs and estimated budget associated with each Air Force Mission 

Design Series (MDS) (e.g. F-15E or B-52H) as shown in Figure 3.   

          

 
 

        
         
         
         
         
         Figure 3:  Cost per Flying Hour Budgeting Process 

        
          We define this as the proportional model because it assumes the cost to fly the Air 

Force’s aircraft are proportionally related to the number of hours flown such that the 

relationship between flying hours and FH Program costs is a constant, linear relationship; 
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and when zero flying hours are flown, zero FH Program costs are incurred.  In the 

following sections we provide more detail on how Air Force personnel generate each 

component of the proportional model. 

     Estimating Flying Hours. 

In 1999, the General Accountability Office reported the Air Force’s inability to 

execute the number of hours it requested each year.  For example, from fiscal years 1995 

through 1998, the Air Force flew fewer hours than it requested with a low of 89 percent 

of requested hours flown in fiscal year 1995 to a high of 94 percent in fiscal year 1996 

(GAO, 1999:2).  In efforts to achieve greater accuracy in flying hour estimates, each 

Major Command (MAJCOM) switched to standardized methodologies which reflected 

the mission of each respective MAJCOM.  The new models calculate flying hours based 

on the number of pilots required to be combat mission-ready, basic mission-capable, or 

current with their training.  The flying hour models also account for pilot experience, 

guidelines for mission types and weapons qualifications, special capability sorties, and 

collateral sorties (GAO, 1999:5-6).   

     Estimating CPFH Factors. 

The second portion of the FH Program budgeting model is the CPFH factor.  

Three separate types of costs typically make up the CPFH factor:  Depot Level Reparable  

(DLR) and consumable spares managed by the Material Support Division (MSD), 

consumable supplies (both General Support Division and those purchased via the 

Government Purchase Card), and aviation fuel (Rose, 1997:4).  DLR spares are described 

as those items that are used in direct support of aircraft maintenance and can be repaired 

at an authorized maintenance facility.  DLR spares include items such as engines and 
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avionics equipment.  Consumable items are expendable, non-reparable spares in direct 

support of the FH Program.  Chargeable consumable items include items such as special 

solvents, nuts, bolts, and de-icing fluid (AFCAIG).  We note that the terms DLR and 

consumables are generally used to identify parts managed by MSD and GSD 

respectively.  Contrary to how the process has been described in previous literature, the 

calculation of the CPFH factors is complex and requires an involved bottom up 

methodology. 

  We describe the process as complex because there are thousands of types of 

DLR parts and the demand for each type is forecasted with a grass roots approach.  The 

DLR CPFH factor calculation starts by collecting two years of demand data for every part 

used on the MDS being estimated.  The total demand for each part is divided through by 

the number of hours flown over that same two year period.  The result is a demand per 

flying hour factor for each part.  Based on expected flying hours and the demand per 

flying hour factor, analysts from both the Central Asset Management (CAM) Office and 

the Spares Requirement Review Board project the total demand for each part and then 

adjust for known changes in maintenance procedures, warranties, part changes, or other 

factors.  The final total demand for each part is then multiplied by the projected price of 

each part, which is provided by the Supply Management Activity Group (SMAG), and 

the result is the estimated flying hour budget for each specific MDS.  The budget is then 

divided by the projected flying hours to arrive at a CPFH factor which can then be used 

to justify the budget and as an incremental analysis tool should the number of flying 

hours to be flown change in the future.  These factors are then adjusted for inflation, sent 

through multiple levels for review, and finally approved by a General Officer/Senior 
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Executive Service level group known as the Air Force Cost Analysis Improvement Group 

(AFCAIG).  Figure 4 illustrates how this process works for a single type of part.   

 

Figure 4:  Flying Hour Program Budget Estimation Overview 

 
The consumable CPH factor development process is less involved because the 

demand for the different types of consumable parts is much less volatile than the demand 

for DLR spares.  Also, the DLR spares constitute a much larger portion of the FH 

Program costs.  The consumable CPFH factor is calculated using three years of historical 

data as the ratio of normalized dollars spent on all consumables and total hours flown for 

each MDS.  It is then changed from Constant Year dollars to Then Year dollars and sent 

through multiple levels of review for final approval by the AFCAIG (Kirby, 2008). 

It is important to note that prior to FY08, the Air Force generated separate factors 

for every MAJCOM even if the same MDS was owned by more than one MAJCOM.  In 

an effort to manage the FH Program more efficiently, the Air Force centralized the 

management and estimating processes in the CAM Program Office.  The purpose behind 

this change was to create an office with sufficient expertise to manage the program while 

also reducing manpower and financial transaction costs.  As a result, the Air Force now 
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calculates each factor for each separate MDS and then applies these factors Air Force 

wide instead of at the individual MAJCOM level. 

As these factor calculations demonstrate, the current process the Air Force uses to 

calculate flying hour costs is heavily dependent on three areas: prices of reparable and 

consumable spare parts, demand of reparable and consumable spare parts, and actual 

flying hours flown (GAO, 1999:3; Kirby, 2008).  These three areas of variability make it 

difficult to accurately forecast flying hour cost.  The GAO reported that price instability 

has been the biggest player in the inability to properly estimate flying hour costs.  They 

note that the SMAG did not provide stable prices throughout the late 90’s even though it 

is required to do so (1999).      

     The Air Force Repair Enhancement Program. 

 The figures projected in the FH Program budget represent a combination of 

expenditures and credits into an aggregated net sales figure.  Therefore, we provide 

background on the Air Force Repair Enhancement Program (AFREP) because of the 

integral part it plays as the origin of credits in the FH Program and the fact that we later 

attempt to estimate charges separate from credits.  According to Air Force Instruction 21-

123, the objective of AFREP is to optimize “Air Force resources by increasing the wing-

level repair capability of aerospace parts and equipment” (2002:3).  The program 

encourages maintenance organizations to identify parts for repair.  Repair processes for 

parts are approved locally by the base for base reparables or by the Single Manager 

Organization for all other items.  Approval will be granted only if the total cost of 

repairing the part is less than the cost of purchasing a new part, the part is considered 

necessary to meet mission requirements, and the repair of the part does not introduce risk 
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to mission performance.  The repair and return of aircraft parts by maintenance 

organizations to the supply system generates a credit to capture the savings associated 

with repairing the part instead of purchasing a new one.   

 
 
Previous Work on CPFH/FH Program Forecasting Models 
 

A large amount of research has been previously conducted by the Air Force 

Institute of Technology (AFIT), Logistics Management Institute (LMI), and RAND.  

These studies have focused on various aspects of Operating and Support (O&S) Costs 

ranging from total Air Force O&S costs to MDS specific DLR or consumable parts costs.  

In general, the previous research has attempted to find cost drivers and improve upon the 

proportional model or create new forecasting models to aid the Air Force in its budgeting 

efforts.  While much effort and some progress has been made by previous researchers, 

decision makers have yet to change the FH Program budget estimating process.   

 We speculate decision makers have been slow to implement new initiatives for 

three reasons.  First, many of the studies focused on a single or very few MDS.  

Therefore, decision makers are left to wonder if those models can be generalized to other 

airframes.  Any gained efficiencies in using the MDS specific models created by previous 

research may be outweighed by the time and manpower needed to calibrate and 

implement numerous and different models to each specific MDS.  Second, many of the 

previous studies have failed to properly validate that the forecasts generated from their 

own models create forecasts superior to those generated by the proportional model.  

Finally, by using the bottom up method the AFCAIG’s current approach assists 

logisticians by creating a valuable byproduct in the form of a part demand forecasts.  This 
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demand forecasts can be used to aid the supply system to meet expected demands and 

attempt to keep prices stable as required for the Air Force Working Capital Fund.  While 

only a few of the studies may have created a policy impact on the FH Program, each of 

them has helped to further the research on how to best estimate the Air Force’s FH 

Program budget.  The following sections highlight some of the most significant findings 

of those studies. 

     Hildebrandt and Sze Create Cost Estimating Relationships for Operating and                 

Support Costs and Its Various Components. 

 Using data from the Visibility and Management of Operating and Support Costs 

database in conjunction with aircraft characteristic information, Hildebrandt and Sze 

created aggregate cost estimating relationships to explain O&S costs.  They found flying 

hours, flyaway costs, and Mission Design average fleet age to be statistically significant 

predictors for both total O&S costs per aircraft and O&S costs less fuel and personnel 

costs per aircraft.  Hildebrandt and Sze used a log-log regression, to estimate the 

relationships.  To avoid confusion, here and throughout the remainder of this paper we 

refer to a log-log regression as one in which the dependent variable and at least some of 

the independent variables have been adjusted using a natural log transformation.  

Hildebrandt and Sze chose this specification to allow for a nonlinear relationship between 

the independent and dependent variables as well as for other benefits which will be 

further discussed in Chapter III.  The authors found that flyaway costs were a good proxy 

for the year of initial operation capability and aircraft type.  Their findings support a less 

than proportional relationship between aggregate O&S costs, less personnel and fuel 

costs, and flying hours.   
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The Air Force has traditionally characterized the relationship between age and 

O&S costs as a bathtub effect or parabolic relationship.  This characterization manifests 

itself from the belief that operation costs initially decline early in an aircraft’s service life 

as learning benefits take effect.  After the initial learning phase the aircraft moves into a 

steady state mid-life period in which O&S costs are fairly stable.  Finally, it’s assumed 

the aircraft will fail more often and incur modifications as the aircraft approaches its 

service life forcing the O&S costs to rise.  Hildebrandt and Sze found no such bathtub 

effect, but rather a positive relationship between O&S costs and average age (1990).  

Figure 5 demonstrates the bathtub effect and breaks it apart into its three stages. 

 

Figure 5:  Bathtub Effect Demonstrating Parabolic Relationship between Age & Maintenance Costs 

 
Hildebrandt and Sze conjectured that based on the time frame of the data used in 

their study, the costs had already moved past the initial and steady state periods and were 

in the upward portion of the aging effect.  Later, Hawkes and White took this point into 

account by evaluating airframes that represented each of the stages shown in Figure 5 and 

showed that the cost per flying hour do follow the bathtub curve with respect to age 

(2008).      
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      Wallace, Houser, and Lee Predict Removals Using Physics Based Constructs. 

Wallace, Houser, and Lee found that during Operation Desert Storm the 

proportional CPFH model over predicted part demand by more than 200% and as a result, 

they attempted to find other factors that would be useful in calculating flying hour costs 

(2000:iii).  Figure 6 graphically displays the proportional model’s erroneous prediction of 

part demand during Operation Desert Storm.   

 

Figure 6:  Proportional Model Projected Versus Actual C-5B Removals Prior to and During 
Operation Desert Storm (Wallace et al., 2007) 

 
Wallace et al. used C-5B data from Operations Desert Storm to create a model 

that predicted part removals using maximum likelihood estimation.  They validated their 

model with data from Kosovo for the KC-10, F-16C, and C-17.  The model considered 

three separate failure modes that they believed cause removals:  dormant, cycle induced, 

and operations based (2000:iii).  The authors operationalized these theoretical constructs 
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using ground days, cold and hot cycles (initial take-offs/final landing and intermediate 

take-offs/landings), and flying hours as independent variables in their model (2000:2-1).   

Wallace et al. argue that the proportional CPFH model only captures one aspect of 

why part removals occur.  They claim that ground time causes removals because 

environmental aspects such as dust and humidity degrade part integrity and that cycles 

cause removals by creating intense stress on the aircraft.  They contend that as long as the 

flying behavior remains constant, then the failure point from each cause of removals 

remains constant.  Therefore, it would be reasonable to use any one of the three failure 

modes to predict removals except for periods in which the flying behavior changes 

(2000:1-1).  It is for this reason the authors maintained the proportional model performed 

poorly during contingency operations.   

The authors stated that their physics-based model is more robust because it 

performed at least as well during peace time, but outperformed the proportional model 

during surges (2000:iii).  The surges referred to any periods that include operations which 

do not coincide with routine flying hour operations such that the normal flying behavior 

is changed.   However, we note assumptions made by the Air Force’s proportional model 

is essentially a regression forced through the origin.  As illustrated by Unger, when the 

number of flying hours increases beyond the average hours normally flown, the 

proportional model will begin to overestimate costs (2008).  If an intercept, representing 

fixed costs, is included in the regression then the marginal effect of additional flying 

hours on cost will be attenuated.   

Wallace et al. states that take-offs and landings accounted for fewer removals in 

the F-16 than the heavier tanker and transport planes.  This point may be attributed to the 



27 
 

fact that fighters are much lighter and undergo less stress during cold cycles (2000:4-19).    

Contrasting the findings from Hildebrandt and Sze, Wallace et al. reported the presence 

of long term increasing or decreasing trends in three of the four airframes they analyzed 

which they said supported the bathtub effect characterization.  We note that the 

dependent variables for the two studies were different.  Nonetheless, costs should behave 

similarly to removals because costs are essentially driven by removals.  In addition, the 

dependent variable for one of the models studied by Hildebrandt and Sze contained costs 

associated with the types of removals Wallace et al. analyzed.  The shortfall of this 

argument is that prices of different parts vary so we would need to know which types of 

parts are being removed.  However, at an aggregate parts level the costs of various parts 

might average out.  In fact, Wallace et al. use this theory because they do not actually 

predict which types of parts are removed and so their number of removals is an average 

across all parts.  

     Slay and Sherbrooke Focus On Predicting Removals As a Function Of Sortie     

Duration Instead Of Flying Hours. 

 Like Wallace et al., Slay and Sherbrooke also took note of how grossly the 

proportional flying hour model over predicted part removals during Operation Desert 

Storm.  They stated that “although the sorties flown were much longer than their 

peacetime counterparts, demands per sortie remained about the same” (Slay and 

Sherbrooke, 2000:1-1).  Based on this phenomenon Slay and Sherbrooke hypothesized 

that parts fail based on the number of sorties flown, not the number of hours flown.  They 

argued that because the Air Force forecasts wartime demand based on peacetime data, 

and because predictions will drive inventory investment and capability assessment, it is 
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important to know if failures result from flying hours, sorties, or a combination of the 

two.  Through linear regression, using fighter aircraft data from 1993, Slay and 

Sherbrooke found sortie duration to be a significant predictor variable of part demand per 

sortie (2000:2-3).  In addition, they also found the last sortie of the day, the mission type, 

and location to be significantly related to removals.   

First, the last sortie of the day was associated with drastically more maintenance 

removals than other sorties.  The authors argue that this was due to deferred maintenance.  

Second, they found that mission type also affected maintenance removals per sortie.  For 

fighters, shorter missions are associated with combat training where pilots pull excessive 

Gravity Forces and the aircraft go through high levels of stress.  On the other hand, cross 

country sorties are longer and are associated with much less stress on the aircraft.  

Therefore, the authors concluded mission type must be controlled for so that it does not 

overwhelm the effects of sortie length (2000:202).  Finally, Slay and Sherbrooke stated to 

have found location effects when they evaluated the same type of MDS located at 

multiple bases.  The authors reasoned that the location effect could have been due to the 

proximity of training ranges to the bases because bases that must fly further to reach the 

training ranges have higher average sortie durations (2000:2-3).   

Sherbrooke and Slay generated a piecewise linear model that assumes demands 

are 40 percent flying hour/60 percent sortie dependent for sorties up to 1.4 hours and 6 

percent flying hour/94 percent sortie dependent above 1.5 hours (2000:2-6).  They 

selected their model by minimizing the mean squared error found from a validation data 

set.  Figure 7 demonstrates the relationship between demands per sortie, flying hours, and 

sortie length found by Slay and Sherbrooke.   
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Figure 7:  Slay and Sherbrooke's Demand Forecasting Model (Slay and Sherbrooke, 2000:2-5) 

  
     Laubacher, Hawkes, and Armstrong Each Attempt To Improve the Proportional  

Model By Better Predicting CPFH Rates.  

Laubacher, Hawkes, and Armstrong generated a series of theses using various 

methods.  Each of these studies was aimed at creating a model better capable of 

predicting CPFH factors and ultimately FH Program budgets (2004; 2005; 2006).  These 

particular theses all focused on the same proportional model specification currently used 

by the Air Force to forecast costs such that the FH Program budget for a specific MDS is 

a result of the product of the number of flying hours expected to be flown and a CPFH 

factor.  Methods used to calculate the CPFH factor included:  simple forecasting 

techniques, multiple regression analysis, and panel data multiple regression analysis. 

 Laubacher (2004) analyzed three forecasting techniques:  moving averages, single 

exponential smoothing, and Holt’s Linear Method as ways to calculate the CPFH factors 

for each of the Air Force’s rotary aircraft in each MAJCOM.  By comparing the accuracy 
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of his forecasted rates and the rates forecasted by the AFCAIG process using mean error, 

mean absolute error, mean percent error, and mean absolute percent error; Laubacher 

found that Holt’s Linear Method provided the best estimates for 75 percent of the time 

series analyzed (the study analyzed data from 2001-2004) (Laubacher, 2004:iv).  

Laubacher argued Holt’s Linear Method was superior because of its ability to capture 

trends.   

 Next, Hawkes (2005) built simple and multiple linear regression equations to 

forecasts CPFH DLR rates for all of the National Guard F-16 wings and 13 of 14 Active 

Duty F-16 wings.  He found different explanatory variables drove the Active Duty and 

National Guard rates.  Using data from fiscal years 1998 through 2004, Hawkes tested the 

explanatory power of the following nine variables:  age of aircraft, average sortie 

duration, MAJCOM, base, utilization rate, percent engine type, percent block, percent 

deployed, and a lagged CPFH rate.  Of the variables tested Hawkes found utilization rate, 

base, percent block, percent engine type, average age of aircraft, and the lagged CPFH 

rate variable to be significant predictors of CPFH rates.  The percent block and percent 

engine type variables were used as moderator variables to capture possible differences in 

rates between various versions of the F-16.  Also, the percent deployed variable was used 

because of the findings from Wallace et al. and Slay and Sherbrooke’s work.  Hawkes 

may not have found the percent deployed to be a significant variable because the F-16 is 

such a large fleet that any possible change in rate due to a change in flying behavior was 

overwhelmed by the number of aircraft that did not deploy in support of contingency 

operations and vary their flying behavior.   
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Finally, Armstrong (2006) used panel data multiple regression analysis with fixed 

effects to predict both DLR and consumable rates in an effort “to find a ‘marginal CPFH’ 

rate such that if a MAJCOM flies in excess of its programmed baseline (PB) direct hours, 

the additional funding to pay for contingencies etc. is commensurate with the additional 

(marginal) cost for the extra hours flown, not the full value of a flying hour for that 

weapon system” (2008:4).  Aside from his labeling as a “marginal CPFH rate” he 

attempted to determine how well his models performed as forecasting tools by comparing 

the forecasted costs of the FH Program against the actual cost of the FH Program.  He 

then contrasted his models performance to other models, including the Air Force’s 

proportional model.  While Armstrong claimed his models were superior to others, we 

find flaws in his argument because he came to that conclusion by comparing the accuracy 

of his F-15 model against Wallace’s model, Hawkes’ model, and a proportional model; 

all of which estimated rates for F-16s.  Nonetheless, using monthly data from 2001 

through 2005, Armstrong’s research supports the idea that age, average sortie duration, 

and seasonality (monthly), affected the consumable and DLR CPFH rates (2008).  

     Hildebrandt Revisits His Previous Work, Focusing on Depot Level Reparable Costs. 

Hildebrandt narrowed his previous research and created budget estimating 

relationships (BER) to predict DLR net sales.  He employed pooled data from fiscal years 

1998 through 2003 and applied longitudinal regression techniques to analyze all USAF 

MDS excluding those supported solely by Contractor Logistics Support.  Hildebrandt’s 

BER employed aircraft characteristics, operations tempo information, and time related 

variables to estimate DLR net sales.  The specific variables which compose those three 
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categories can be seen in Figure 8.  All independent variables were found to be 

significant with the exception of the fiscal year indicators. 

 

Figure 8:  Hildebrandt's DLR Net Sales BER (2007:23) 

 
  Hildebrandt was able to capture variables found to generally affect FH Program 

costs or specifically affect DLR costs in previous research in one model.  He used 

mission type and flyaway costs, as he and Sze had done in 1990, to capture the type of 

aircraft.  Because the timeframe of his data provided variation in both average sortie 

duration and landings per sortie as a result of Operations Enduring Freedom and Iraqi 

Freedom he was able to capture the effects of flying in contingency operations discussed 

earlier with Sherbrooke, Slay, and Wallace et al.  Finally, though he admits the aging 

effect is complex and in reality dependent upon other variables such as modifications and 

technology, he still finds a significant aging effect after controlling for other temporally 

dependent covariates (2007).  Because Hildebrandt used a log-log model specification 
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and the coefficient on the age variable was greater than one, Hildebrandt possibly 

captured the tail end of the bathtub effect discussed in previous research.      

Another important finding from Hildebrandt’s 2007 research was the idea that the 

AFCAIG process of forecasting FH Program costs as proportionally related to flying 

hours, described earlier in this chapter is appropriate (44).  Of course Hildebrandt’s BERs 

controlled for variables other than flying hours; nonetheless, his results supported a 

regression coefficient on flying hours that was not significantly different than 1 percent 

using a log-log model specification.  In addition, Hildebrandt reasons that because the 

prices charged for DLR parts include overhead costs, which normally are considered 

fixed costs, the applicability of a fixed cost portion in the BER is questionable.  However, 

the intercepts in Hildebrandt’s regressions are all significant and support the inclusion of 

fixed costs.  Finally, we consider noteworthy the fact that the coefficient on flying hours 

in his study is the average across all the MDS analyzed.  Even though Hildebrandt 

controlled for the MDS using flyaway cost and mission type, the use of cross-sectional 

fixed effects only accounts for separate intercepts and does not account for differing 

slopes.  

 It is important to explore the appropriateness of accounting for various slopes 

across the various airframes because the slopes represent the estimated CPFH factors.  

While Hildebrandt’s results suggest an averaged proportional relationship between flying 

hours and costs across all airframes, it is likely for individual MDS to have non-

proportional relationships.  This shortcoming is important because Hildebrandt’s BER 

should not be used as a marginal tool focused on incremental analysis of a single MDS 

based on the fact that it uses averaged effects.  In addition, because it is likely that each 
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MDS follows different budget estimating relationships it is also probably better to 

estimate the costs for each MDS separately. 

     Unger Updates Hildebrandt And Sze’s Research By Evaluating O&S Cost Drivers. 

In his study Unger sought to improve O&S resource allocation through better 

estimation methods (2008:1).  Contrary to Hildebrandt’s (2007) findings, Unger states 

that the major problems with the AFCAIG’s proportional model are that the CPFH factor 

creates an average usage effect and the proportional model is incorrectly specified.  First, 

because the proportional model creates an average effect, when decreasing the number of 

hours flown beyond the average hours used to calculate the CPFH factor the budget will 

be underestimated and vice versa when the hours flown are above the average number of 

hours used in the CPFH factor calculations (Unger, 2008:17).  Figure 9 depicts the over 

and underestimation of flying hour costs when using the proportional model.   

 

Figure 9:  Proportional versus Non-proportional Models 
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The proportional model results in a poor marginal analysis and budget forecasting 

tool because the further the real number of hours moves away from the average number 

of hours the larger the error becomes.  This statement can be visualized in Figure 9 by the 

separation between the proportional model and non-proportional model as the number of 

flying hours move away from the point where the two models intersect.  Yet, Air Force 

Instruction 65-503, which governs the use of the CPFH Factors, advises the use of the 

factors as both a budgeting and an incremental analysis tool.  Second, Unger argues the 

proportional model is incorrectly specified because it assumes a constant, linear 

relationship between flying hours and flying hour costs as well as having a lack of fixed 

costs.  Figure 9 demonstrates the theoretical constant relationship and the theoretical 

curvilinear relationship between flying hours and FH Program costs for the proportional 

and non-proportional models respectively.      

Among other models, Unger regressed O&S, DLR, and consumable costs on 

usage while controlling for other factors.  He used logarithmic transformations which 

provided a constant elasticity, curvilinear, model and aided in meeting OLS assumptions 

by compressing the variance of the variables.  The log-log specification allowed for 

nonlinear relationships between the dependent and independent variables.  His results 

supported the inclusion of a nonzero intercept which theoretically would capture fixed 

costs associated with flying hour costs and ultimately dampen the effects of usage on 

costs (2008:4).   

Different from Hildebrandt’s 2007 results, Unger’s findings showed an 

insignificant relationship between flying hours and DLR costs.  Unger did find a 

significant and less than proportional relationship between flying hours and consumable 
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costs (0.4 percent increase in consumable costs for every 1 percent increase in flying 

hours) (2008:74).  Even though the usage effect was found to be insignificant with 

respect to DLR costs, the non-proportional usage effect associated with consumable costs 

serves to invalidate at least that piece of the proportional model.         

Unger also tested for a linear and nonlinear aging effect using both age and its 

square as variables and found mixed results concerning age.  He found that when the age 

variable was significant, it accounted for the majority of the effect on cost and therefore, 

the squared term was unwarranted.  However, Unger did observe that because his models 

were aggregated at the Mission Design level, newer aircraft might have decreased the 

average age and biased any possible nonlinear aging effects (2008:42-43).   

     Van Dyk Continues Unger’s Work, Focusing On DLR and Consumable Costs for 

The Air Force Bomber Fleet. 

 Van Dyk attempted to present improvements to the current method of forecasting 

flying hour costs.  She focused on two model specifications directed at forecasting 

consumable and DLR costs for B-1B, B-2, and the B-52H each separately.  Like Unger, 

she used a logarithmic transformation on the dependent variable and some of the 

independent variables in an attempt to capture possible nonlinear relationships.  First, she 

tested the correctness of the proportional model by regressing the log of DLR and 

consumable costs on the log of flying hours and found that the intercept was significant at 

the 0.05 level in two of the three MDS evaluated for both types of costs.  In addition, the 

flying hour variable was significant in two of the three MDS evaluated at the 0.01 level 

for both types of costs and statistically different than 1 percent.  Therefore, contrary to 
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Hildebrandt (2007) her results support the prospect that the proportional model is 

generally inappropriate.   

Van Dyk tested eleven variables other than flying hours in search of predictor 

variables to include:  lagged costs, fiscal trends, sorties, average sortie duration, age 

utilization rate, mission capable rate, cannibalization rate, total ownership hours, crude 

oil prices, and temperature.  Van Dyk’s research supported mixed results as to which 

variables were valid predictors for both consumable and DLR costs across each of the 

three airframes she evaluated.  However, her findings did contradict Unger’s in that she 

found flying hours to be a significant predictor in seven of her eleven DLR cost models.  

In addition, Van Dyk found that lagged costs were helpful in predicting five of her eleven 

DLR cost models and six of her ten consumable cost models.  Also, her findings 

supported Armstrong’s (2006) results with the need to explain for a seasonal trend.   

Finally, Van Dyk suggested that evaluating credits and expenditures separately 

may reduce some of the variance associated with both DLR and consumable costs.  

Often, expenditures and credits show co-movement and cancel each other out during a 

given time period, making it difficult to find the true variance in the variables as can be 

seen in Figure 10 (2008:81-85).   
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Figure 10:  Quarterly Expenditures versus Credits for the B-2A (1998-2004) 

 
The arrows in Figure 10 point to the 10th, 16th, and 25th periods and represent 

instances in which costs and credits move in opposite directions.  When this occurs Van 

Dyk observed that the net sales consumable variable demonstrated very large variance 

from its normal behavior.  This would essentially create observations in the data that can 

affect both the regression coefficient and its standard error and possibly affect the 

inferences drawn from the results.  

 
  

Chapter Summary 
 
 In previous sections, we detailed how the Air Force currently estimates the FH 

Program Budget.  We explained that the current method assumes a proportional 

relationship between flying hours and FH Program costs.  In addition, we discussed 

circumstances and reasons why the current proportional model may not be the best 

method for forecasting the Air Force FH Program budget.  We also discussed how 

previous research has sought to find different cost drivers and used different estimating 

techniques in search of a best forecasting method.  Despite the copious amount of 
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research already done we find the results of that research to be mixed and thus see the 

need for further analysis.  Some of the contradictory examples can be seen in the list 

below:   

• Hildebrandt (2007) found flying hours to be a significant predictor of DLR costs, 
but Unger (2008) found the opposite, and Van Dyke (2008) found flying hours to 
be significant in roughly half of her models. 
 

• After controlling for other variables, Hildebrandt’s (2007) results support a linear 
relationship between flying hours and DLR costs, yet Van Dyk (2008) found the 
relationship was better explained through a nonlinear specification. 
 

• Laubacher, Hawkes, and Armstrong all considered the ability of multiple 
variables to explain changes in the CPFH factors, but their work hinges on a 
proportional relationship which we have already shown to be questionable. 

 

 We continue the work by first evaluating the relationship between predictor 

variables, which we discuss in the next chapter and DLR costs.  In our models we predict 

costs like Hildebrandt (2007), Unger (2008), and Van Dyk (2008) instead of the CPFH 

factor like Laubacher (2004), Hawkes (2005), and Armstrong (2006).   By predicting 

costs and including usage as an independent variable the model intrinsically estimates a 

CPFH factor as the usage regression coefficient.   

 In addition, based on the previous literature we control for other variables found 

to effect costs to include age, fiscal year/fiscal month, number of sorties, landings per 

sortie, MDS, base, and possible lag structures.  The statistical techniques used by 

Hildebrandt (2007) and Unger (2008) generated average usage effects which are assumed 

to apply across airframes and locations such that a single usage coefficient was estimated 

and applied across all MDS types and all locations.  We investigate this assumption by 

evaluating location and MDS type as moderators of the costs/usage relationship.  In 
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addition, we examine Van Dyk’s (2008) suggestion by using a piecewise model in which 

expenditures and credits are estimated separately and then combined to calculate net 

costs.  

We discussed how some of the model comparison techniques were unfair and also 

note now that the most recent research did not evaluate the forecasting abilities of their 

models.  We objectively scrutinize accuracy of forecasts from our model with previous 

models and the current, proportional model to determine the best methodology.   

Finally, many of the previous studies used time series data and included 

autoregressive terms in their models.  Only Armstrong tested for stationarity of the 

variables, however.  Hildebrandt created a first differenced model to control for 

nonstationarity in his appendix, but never determined if unit roots were in fact present.  It 

is possible for time series to contain unit roots such that they are non stationary.  If the 

variables are truly non stationary, and the nonstationarity is not accounted for in the 

estimating process, it is possible the results may lead to spurious correlation (Harris and 

Sollis, 2003:1).  We test for unit roots in our work and if present adjust accordingly.  We 

discuss stationarity in more detail in Chapter III.     
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Chapter III:  Data Collection and Methodology 
 
 
 
 In this chapter we describe the data and how we propose to answer each of the 

research questions outlined in Chapter I.  First we explain the variables and where the 

data for each variable was acquired.  We discuss the shortcomings of the data.  Lastly, we 

discuss the methods that we use in Chapter IV to analyze and interpret the results. 

 
 
Data Sources and Variables 

We gained data for this study using two databases:  the Air Force Total 

Ownership Cost (AFTOC) database and the Air Force Reliability and Maintainability 

Information System (REMIS).  AFTOC provides financial and inventory data, through 

the Supply Distribution Table (SDT), representing information from the Standard Base 

Supply System and the Wholesale and Retail Receiving/Shipping System.  The inventory 

data provides information on quantity and part type for each transaction.  The financial 

data provides prices for each part and designates charges versus credits for each 

transaction.  Based on the information from various data feeds, the SDT uses allocates the 

financial and inventory data to organizations, Mission Design Series, types of cost, and 

time periods (AFTOC, 2008).  We found all of the charge, credit, and net cost 

information used as dependent variables in this study using the AFTOC database.  The 

REMIS database contains usage information and aircraft characteristic data used as the 

independent variables in this study.   
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Dependent Variables:  Material Support Division (MSD) Fly DLR/Consumable 

Costs (Charges, Credits, and Net Costs) 

Defining the dependent variables is critical to our research because the terms used 

to define FH Program costs and its components can vary greatly.  In general, Depot Level 

Reparable costs found in AFTOC can be attributed to Element of Expense/Investment 

Code (EEIC) 644, also known as Material Support Division (MSD), and EEIC 645.  

Consumable costs can be found in EEIC 644 (MSD), but are also found in EEIC 609 

(General Supply Division).  The focus of this study is on EEIC 644, or MSD, portion of 

the CPFH factors, which we further disaggregate into our dependent variables:  charges, 

credits, and net costs.  Charges occur when parts are purchased, credits occur when parts 

are turned in, and net costs are charges minus credits for a particular MDS, location, and 

time period.  Because not all items allocated to these EEICs are FH Program costs it is 

necessary to determine which costs are flying hour-driven costs.   

We identify FH Program cost based on AFTOC business rules which are 

predicated upon supporting documentation associated with each transaction.  The 

AFTOC database defines FH related program charges or credits from the Material 

Support Division (MSD) to the MAJCOMS under EEIC 644 as previously mentioned.  

Assignment as a MSD flying hour cost is contingent on the item being a Budget Code 8 

plus a Type Organization Code (TOC) 3, 6, 7, 8, or 9.  If the item is a Budget Code 8 

item, but does not have a TOC of 3, 6, 7, 8, or 9 then it is allocated to EEIC 645.  The 

EEIC 645 items might still be considered DLR items, but they are not “fly DLR” items 

and are not included as FH costs.  Note that throughout this study we discuss DLR costs 

as they pertain to flying DLR costs only and we do not attempt to predict those items 
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expensed under EEIC 645 considered non-fly DLRs.  In addition, it is important to 

understand there are both consumable and flying DLR costs found within MSD (EEIC 

644).   

As previously discussed, in addition to the consumable items found under the 

MSD, there are also consumables found in the GSD.  The GSD consumable items are 

designated by a Budget Code of 9 and are assigned to EEIC 609 or 605.  We do not 

estimate GSD consumable items in this study.  Figure 11 demonstrates how costs are 

allocated. 

 

Figure 11:  Cost Allocation Procedures 

We used the Air Force Total Ownership Cost database in conjunction with 

Microsoft Access© to retrieve the cost information at various levels of aggregation by 

location and by time.  We discuss both the advantages and disadvantages of data 

aggregation with more detail in later sections of this chapter.  Table 1 shows a subset of 

selected fields of the raw data taken from the AFTOC database. 
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Table 1:  Subset of Raw Cost Data Taken from AFTOC Database 

 

 
Until recent years, both the National Guard and Reserve units used slightly 

different cost allocation procedures than the Active Duty Air Force.  Therefore, it would 

be inappropriate to use the cost definitions discussed for any portion of the Air Force 

other than the Active Duty portion.  For these reasons we chose not to evaluate the 

National Guard and Reserve units. 

Finally, we used inflation rates approved by the Office of the Secretary of 

Defense (OSD) to normalize the cost data and mitigate the effects of inflation.  We 

obtained the rates from the SAF/FM inflation tutorial located on the Air Force Portal and 

converted all costs into CY08$.      
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     Independent Variables 

Our research explores the predictive power of usage and aircraft characteristic 

variables to predict the cost of the FH Program.  We use these variables because of their 

ability in prior literature to predict FH Program costs discussed in the previous chapter.  

The following sections define each of the independent variables.   

Usage Variables.  The Air Force currently uses expected flying hours to create 

FH Program budgets.  While the specifics of the estimated relationships in previous 

literature has varied, the presence of a correlation between flying hours and FH Program 

costs has been empirically validated.  The literature also suggests that other usage 

variables play a role in FH Program costs, especially when the ratios between the usage 

variables changes as discussed by Wallace et al. (2007).  In addition to flying hours, we 

also evaluate how landings and sorties contribute to the multi-dimensional influence of 

aircraft usage on costs.  The Air Force does not currently estimate the number of future 

landings and sorties as it does for flying hours, but could potentially do so using historical 

information, training requirements, and contingency information.  It would stand to 

reason that as usage increases, FH Program cost should also increase.  However, there are 

more detailed effects that can be estimated when the usage variables are analyzed 

separately.  We obtained monthly flying hour, sortie, and landing information for each 

tail number associated with the Mission Design groups evaluated in this study. 

Age.  Though age is not the primary variable of interest in this study it is 

important to control for age as demonstrated in previous research.  In general, we expect 

that as aircraft increase in age they become more expensive to maintain.  From the 

REMIS database, we obtained aircraft acceptance dates of each tail number in the Air 
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Force inventory for the MDS groups evaluated.  We then used Microsoft Excel© to 

match the aircraft acceptance dates with the usage data via the aircraft tail numbers.  The 

usage data is organized by date, so we were able to calculate each aircraft’s age by 

subtracting the aircraft acceptance date from the usage date.  Though we chose to 

calculate the age variable in days, the units in which the variable is analyzed will have no 

effect on the forecasting results because the regression coefficient adjusts appropriately 

according to units used.  Finally, because we aggregate from the tail level to MDS groups 

and from months to quarters and years, the average age variable is an average of the 

aircraft for each MDS group for a given period of time.   

Dummy Variables:  Location and Aircraft Characteristics.  We use dummy 

variables for each MDS group for every level of aggregation and for each location at the 

base and MAJCOM levels of aggregation.  We created nine cross sectional dummy 

variables representing each MDS group and five representing each MAJCOM for the 

MAJCOM level of aggregation.  In addition to the cross sectional dummy variables, we 

created seasonal dummy variables representing months and quarters for their respective 

levels of aggregation.  Table 2 provides a list of all the dummy variables created.  We 

discuss the purpose of using the dummy variables later in the Methodology section.  

Table 2:  List of Dummy Variables 
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          Data Aggregation 

Based on the available data sources, it is possible to aggregate our data on three 

separate dimensions: aircraft type, assigned location, and units of time.  First, it is 

possible to evaluate the different types of airframes ranging from MDS (e.g. F-16C or 

KC-135R), to MD (e.g. F-15 or KC-135).  Unger argued it is inappropriate to analyze the 

effects of usage variables on costs at the MDS level because of intricacies associated with 

cost allocation in the Air Force.  The crux of his argument was that for multiple MDS the 

cost may be recorded by a single Program Element Code and allocated to a single MD.  

In such an instance, costs are then allocated from the MD to the MDS level based on 

proportions of flying hours.  The argument follows that if the MDS level is used the 

relationship between flying hours and cost would be overstated (2007).  For this reason, 

we choose not to evaluate aircraft at the MDS level except where the accounting process 

properly allocates costs.   

The CAM office and the A4/AMC office provided us with appropriate MDS 

groups (Kirby, 2008; Chamberlain, 2008).  These groups allow us to evaluate each type 

of airframe at the lowest appropriate level, while still maintaining proper cost allocation.  

Table 3 demonstrates how these groups were made for the aircraft we evaluate in this 

study.  Where MDS are very similar and shared accounting classifications they are 

grouped together.  However, the MDS that are very different than others from within the 

same MD are kept in their own group.  For example, the F-15E is very different than the 

F-15C and F-15D because of different missions, roles, and accounting classifications.  On 

the other hand, all versions of the C-5 are so similar that we can appropriately group them 

together.  
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Table 3:  MDS to MDS Groups 

 

Second, we can evaluate the data at different levels of aggregation based on 

location.  Previous work has discussed separate relationships between usage variables and 

costs for separate bases (Slay and Sherbrooke, 1997:1-4).  In addition, in the past CPFH 

factors were calculated separately for each MAJCOM because the rates did not apply 

well across the entire Air Force.  The data we obtained can be analyzed by MAJCOM, or 

aggregated to a non-locality level that estimates relationships within each MDS across the 

entire Air Force.  We find that analyzing the AFTOC data at the base level of aggregation 

presents construct validity concerns that we discuss in later sections.   

Finally, we can use monthly, quarterly, or annual time periods for our analysis.  

Armstrong’s work was done on a monthly basis and found a fiscal trend based on the 

months (2005).  On the other hand, we might argue that a month is not a long enough 

period of time to allow a true maintenance process to take form because of its stochastic 

nature.  Shorter time periods may show more specificity, but they might also cause more 

noise in the data and suggests a longer time period where the random nature of part 

failures can average out.   
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Overall, we manipulated the data into nine levels of aggregation.  Deciding which 

level of aggregation to use mandates a balance between the level of data that will be 

forecasted, properly specifying the model, and maintaining sufficient observations to 

properly carry out statistical tests.  For example, we can initially rule out the Air Force by 

Year level because it has insufficient observations.   

          Combining the Cost and Usage Databases 

  Once the costs and usage databases were created for each level of aggregation, 

we then used Microsoft Excel© to create our databases.  Table 4 is a subset from the final 

MAJCOM by quarter database where the dummy variables are not shown for simplicity.     

Table 4:  Subset of Final Majcom by Quarter Database 

 

     Location Based Construct Validity Concerns 

 When combining the costs information obtained from the AFTOC and REMIS 

databases we find that there are some construct validity issues with regards to the ability 

of determining cost and usage relationships based on location.  The problem is rooted in 

the difference between the methods the two databases use to allocate costs and usage 

variables.  The AFTOC database allocates cost based on the organization financing the 

maintenance action, while the REMIS database allocates usage based on a geographic 
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locator code which indicates the owning organization of the specific tail number 

incurring the flying hour, sortie, or landing.  In the Air Force, aircraft often fly to 

locations for training or other missions.  Sometimes the aircraft need maintenance and 

receive repair from maintenance organizations other than their owning location.  In these 

situations the financing organization may be different than the owning organization.  We 

hypothesize that this may occur either when accounting records are incorrectly kept or 

when organizations request training with dissimilar aircraft and are responsible for 

paying for the operations.  For example, Whiteman AFB does not own any A-10 aircraft.  

However, our data indicate that costs were incurred at Whiteman AFB for every year 

from FY1998 through FY2007.  In addition, there is no corresponding usage information 

from REMIS for the A-10 at Whiteman AFB during that same period of time.   

Table 5 demonstrates the percentage of costs that are misallocated as a percentage 

of total net costs over all MDS groups.  Because the base is the lowest level of 

aggregation by location, we see that it has the highest percentage of misallocated costs.  

By moving from base to the MAJCOM level we alleviate much of the misallocation.  

Table 5 shows overall unallocated costs and Appendix A breaks out the information by 

MDS group and reveals much more dramatic differences in the percent of unallocated 

costs from the base to the MAJCOM level of aggregation.   

Table 5:  Costs Misallocation at MAJCOM and Base levels 

 

We hypothesize that because not all costs are captured, in general the relationship 

between the usage variables and cost might be underestimated.  This information takes 
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away from the construct validity of the expected location effect at the base level and 

supports the analysis of a location effect by MAJCOM or no location effect at all.  

Therefore, to avoid surrounding our results with construct validity concerns we do not 

analyze the base level of aggregation.  

 
 

Methodology 
 

As discussed in Chapter II, prior research has a used a variety of methodologies 

ranging from a moving average calculation to panel data analysis using fixed effects to 

estimate either costs of the FH Program or the CPFH factors themselves.  Based on our 

panel data, the necessity to answer our research questions, and the ability to forecasts 

future FH Program costs we find a combination of ordinary least squares dummy variable 

regressions and panel regressions to be the most fitting methodology for this study.   

Ordinary Least Squares (OLS) is a method used to estimate parameters of a linear 

regression model.  The estimates are calculated by minimizing the sum of squared 

differences between the actual and predicted values of the model.  These differences are 

often called the residuals.  OLS is said to be the best linear unbiased estimator given the 

residuals are identically and independently normally distributed with zero conditional 

mean and constant variance or homoskedasticity (Woolridge, 2006).  In addition, the 

regressor and regressands must be linearly related through the estimated parameters and 

the regressands must not demonstrate perfect collinearity or multicollinearity at the least.  

Finally, when dealing with time series OLS the series must be stationary.  Violations of 

these assumptions will be discussed with the results in Chapter IV, but we highlight the  
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stationary assumption, specifically discussing stationarity and tests for it later in this 

chapter because it is the only assumption that has not been properly tested for in the 

previous literature with few exceptions.     

We utilize both time series and panel OLS models and choose which one to use 

based on the level of aggregation analyzed.  For example, the Air Force by quarter level 

offers too few observations to estimate MDS group cost functions separately and so a 

panel model utilizing the MDS groups as the cross sections is convenient.  On the other 

hand, if the results support estimating separate cost functions for each MDS then time 

series analysis for each MDS group would be appropriate for levels of aggregation such 

as the Air Force by month level.  If MDS specific cost functions are more appropriate, the 

MAJCOM by quarter and MAJCOM by month levels offer enough observations to 

estimate separate cost functions for each MDS group, but using a panel model with 

MAJCOMs as cross sections makes this estimation more efficient and convenient.  

Equation 1 demonstrates our general use of a time series model: 

( ) ( )0 1 2 0ln costs ln FH age seasont tt tβ β β δ ε= + + + +   (1) 

where costs represents either net costs, charges, or credits at period t.  Flying hours, 

landings, sorties, and age are continuous variables as described in previous sections.  

Season is a vector of dummy variables representing months or quarters.  N-1 total 

dummy variables are included so that the base case is represented by β0.   
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 We use two general forms of panel models.  Equation 2 demonstrates a least 

squares dummy variable regression (LSDV): 

( ) ( )
( )

0 1 2 3 4

0 i1 i2 3

4 5

ln costs ln FH age

FH age

landings sorties

MDS *ln MDS * MDS *landings
MDS *sorties season

it it itit it

i i i it i i itit

i i it it

β β β β β

δ δ δ δ

δ δ ε

= + + +

+ +

+

+ +

+ + +
 (2) 

where cost may again take on one of the three dependent variables.  MDS is a vector of 

dummy variables representing the different MDS groups.  The δij represent parameters to 

be estimated and are associated with MDS group specific effects on the dependent 

variable.  The estimated βi represent the base case parameters because N-1 MDS 

dummies are included in the regression.  The error term varies both across MDS and 

across time.  Interpretations of the LSDV are straightforward.  If the KC-135 MDS group 

is the base group then a one percent increase in flying hours would increase costs by β1.  

For a MDS group not used as the base case a one percent increase in flying hours would 

increase costs by β1 + δi where i denotes a specific MDS group.  This regression is 

convenient because separate intercepts and slopes can be estimated for each MDS group, 

but it does require the estimation of many parameters.   

 To avoid this, we can use a different panel model which we call the fixed effects 

model.  The fixed effects model is seen as: 

( ) ( )1 2 3 4ln costs ln FH age landings sortiesit it it itit itα β β β β ε= + + + + +    (3) 

Where now all the parameters estimated represent the average effect across all i cross 

sections.  The average effect is accomplished through the use of a within transformation 

which essentially averages each observation on the ith individual over the Tth time 

periods for each variable and then subtract these averages from the actual observations.  
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Greene (2003) and Kennedy (2008) provide complete derivations for the within 

transformation.  As apparent in the difference between equations 2 and 3, the fixed 

effects model reduces the number of parameters estimated.  Deciding which panel model 

to use depends on the objective of the regression.   

 We use the LSDV regression to determine if the relationship between cost and 

predictor variables should be estimated as an average, with separate intercepts, or 

separately across MDS groups.  We utilize F-test and t-test shown in equations 4 and 5 to 

test for the individual significance as well as the joint significance of variables with 

respect to their ability to predict costs:   

( )2 2

2

/
(1 ) /( 1)

ur r

ur

R R q
F

R n k
−

=
− − −

    (4) 

/ . .( )
i i it S Eβ β β=      (5) 

Based on the outcome of the previous research question we can then utilize equations 1 

through 3 again to determine which variables are significant predictors of costs.  Finally, 

after creating models for the different levels of aggregation, we can determine if flying 

hours are proportionally related to net costs by calculating confidence intervals around 

the estimated flying hour coefficients.  We discuss more on how each model is used to 

specifically address the first three research questions in Chapter IV.         

     Forecasting Accuracy 

 We use the models created from answering the first three research questions to 

forecast the various types of costs.  Given a specific level of aggregation we subtract the 

credits from the charges to calculate the charges minus credits forecast.  The proportional 

model estimates are forecasted using CPFH factors from the 65-503 Cost Factors.  In 



55 
 

reality, the CPFH factors are continuously updated and these factors represent a snapshot 

in time.  However, we argue budget estimates and submissions also represent a snapshot 

in time and therefore these factors are a fair representation of a simulated budgeting 

process.  We also offer a third comparison by computing our own proportional CPFH 

factors using the prior two years of costs and flying hours to alleviate problems 

associated with the differences in historical costs used to calibrate the models.  This 

version of the proportional model does not take into account adjustments made to the 

baseline values, however.  Forecasting errors for the FH Program are often due to 

differences in predicted versus actual flying hours.  We remove these effects by holding 

flying hours constant in our forecasts of both our proposed model and the proportional 

model.  By doing this, any forecast errors are attributed to factors other than errors in the 

number of predicted flying hours.   

We evaluate the forecasting accuracy of all competing models using root mean 

squared error (RMSE).  We use this loss function to assess forecasting accuracy because 

forecasting is essentially an out of sample problem and we are forced to use prior data 

along with estimated future data to arrive at estimates.  RMSE penalizes larger errors by 

squaring the error.  RMSE is calculated as:  

       
( )

1/ 2
2

1

n

i i
i

A F
RMSE

n
=

 − 
 =
 
 
 

∑
    (6) 

where Ai is the actual cost, Fi is the forecasted cost and n is the number of forecasts.  

As previously stated, because forecasting is an out of sample phenomenon we use an 

iterative calibration method.  The models are first calibrated with data from Fiscal Years 
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1998 through 2004 and forecasts for 2005 are generated.  The model is recalibrated by 

adding data from Fiscal Year 2005 to the calibration set and forecasting the costs for 

Fiscal Year 2006.  The process is repeated to forecasts Fiscal Year 2007 costs.  This 

process mirrors real life budget forecasting.     

 We find that having the lowest loss function score is necessary, but not sufficient 

in determining the superior forecasting model.  It is possible the difference in loss 

function scores between the two models is not statistically different from zero.  In 1995, 

Diebold and Mariano created a way to test the equality of forecasts.  In the Diebold-

Mariano (DM) Statistic the null hypothesis is defined as zero difference between 

forecasting model errors such that E[dt] = 0.  dt is the loss differential defined as g(e1t) – 

g(e2t) where g is some loss function, and e1t and e2t are forecast errors for the given loss 

function in period t for two competing forecasting models.   is the average dt and the 

DM Statistic is calculated as: 

1 1/ 2ˆ[ ( )]
dS

V d
=       (7) 

where ˆ( )V d is: 
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and kγ is the kth autocovariance of dt.  The autocovariance is: 

    1

1

ˆ ( )( )
n

k t t k
t k

n d d d dγ −
−

= +

= − −∑     (9) 

 Diebold and Mariano show through Monte Carlo simulation that their statistic has 

an asymptotic standard normal distribution and through Monte Carlo simulations argue 



57 
 

the performance of their statistic is robust to autocorrelation and non-normal 

distributions.  However, Diebold and Mariano did explain that the test was oversized for 

small samples meaning their statistic generated Type I errors more often than would be 

expected for a given level of significance.  As a result Harvey, Leybourne, and Newbold 

worked to improve the DM statistic by using an unbiased estimator of the variance of d

and improved the finite sample performance (1997).  Harvey et al.’s modification is 

found in equation 10 as: 

1/ 21
*
1 1

1 2 ( 1)n h n h hS S
n

− + − + −
=  
 

   (10) 

where 1S  is the original DM Statistic, n is the number of forecasts, and h represents how 

many periods ahead the forecast was used for.  We use Harvey et al.’s modified DM 

Statistic, *
1S  to determine which forecast is statistically significantly better, if a superior 

forecasting model does exist.  The null distribution of the modified DM Statistic is 

Student’s t-distribution.   

      

Natural Logarithmic Variable Transformation 

 We use a natural logarithmic transformation of our variables for three reasons.  

First, as we have discussed at length in the previous chapter, by taking logs we are able to 

capture possible non-linear relationships between our dependent and independent 

variables without using more complicated statistical procedures.  Hu notes that in cost 

analysis we often deal with multiplicative error terms, “because experience tells us that 

the error of an individual observation (e.g., cost) is generally proportional to the 
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magnitude of the observation (not a constant)” (2005).  By transforming the variables 

from unit space into log space we are able to convert a multiplicative error term into an 

additive error term, supporting OLS assumptions.  Second, when we transform both the 

dependent and independent variables the normal interpretations change and the estimated 

coefficients become cost elasticities.  For example, in the model that regresses the natural 

log of cost on the natural log of flying hours the estimated regression coefficient, βFH, 

would be interpreted as:  a one percent increase in flying hours results in a βFH percent 

increase in cost.  The conversion of the regression coefficient to an elasticity allows us to 

more easily interpret the regression results because we no longer deal with units.  Third, 

the use of a natural log transformation helps our OLS models to be more robust in 

meeting the model assumptions of homoskedasticity and normality of the error terms 

(Habing, 2004; Osborne 2002).   While the log transformation has advantages, it does 

have one specific disadvantage.   

The natural log is undefined for numbers of zero and less.  For our models which 

do not estimate charges and credits separately, it is possible that the Air Force may incur 

negative net costs for any one of the MDS evaluated at any given time.  Previous research 

has dealt with this topic by adding a constant to every observation so that the lowest net 

cost is one.  Van Dyk stated the estimated coefficients should not be affected because the 

constant is added to every observation.  While this manipulation does work when 

estimating regression models in unit space, we find that this is in fact not the case in log 

space.  The addition of the constant biases the size of the estimated parameters and the 

back transformed forecast even after subtracting out the original constant.  The size of 

this bias changes with the size of the constant added and the magnitude of the true 
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elasticity.  Because we are concerned with the size of the estimated parameters as well as 

the forecast, when data for a given MDS group contains negative net costs we cannot 

estimate the net cost model for that group in that specific level of aggregation.      

      Testing For Unit Roots 

 Harris and Sollis loosely define a stationary variable as having a constant mean 

and constant variance (2003:29).  On the other hand, statistical properties of non-

stationary variables vary with time.  In their 1974 paper entitled “Spurious Regressions in 

Econometrics,” Granger and Newbold took the point of view of a “statistical time series 

analyst, rather than the more classic econometric approach” and criticized much of the 

econometric research done at that time for drawing inappropriate inferences founded on 

unsound statistics.  Specifically, they simulated regressions of independent, non-

stationary time series to investigate the likelihood of finding spurious regressions.  

Granger and Newbold concluded that if we regress non-stationary variables, “it will be 

the rule rather than the exception to find spurious relationships” (1974:117).  Non-

stationary variables have a tendency to grow over time.  Though two separate series 

might grow for unrelated reasons, a normal OLS regression will more often than not 

incorrectly find a significant relationship between them.  The spurious regression 

problem is multiplied by the fact that the t-test and F- tests no longer have the normal 

distributions associated with stationary series.  Therefore, we find it imperative to test for 

stationarity so that we might avoid making a Type I error.   

We use the Augmented-Dickey Fuller test for individual time series and the Im, 

Pesaran, and Shin (IPS) unit root test for panels to determine if our series are stationary.  

The IPS test assumes the data generating processes for the cross sections are 
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heterogeneous and that each cross section contains a unit root (Im, Pesaran, and Shin, 

2003).  The IPS performs the test in equation 11 for each i cross section: 

1
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∆∑ represents lagged dependent variables for each i cross section, t 

period, and L lags; itz γ′ represent a constant and possibly a deterministic trend; and iρ is 

the main coefficient of interest.  The IPS averages the t-test on iρ from the individual 

ADF as
1

1
i

N

i
t t

N ρ
=

= ∑ .  If t  is found to be significantly different than zero, then we reject 

the null of a non-stationary series and can proceed with our estimation.  If we are unable 

to reject the null, then researchers must resort to other techniques such as first 

differencing or estimation via an error correction model.  The ADF test is essentially the 

IPS test with two differences.  First, instead of running the regression in equation 

11across multiple i, it is only done on a single cross section.  Second, the ADF test does 

not follow a standard t-distribution and so the critical values have been estimated using 

Monte Carlo techniques.  

 
 
Chapter Summary 

 In this chapter, we discussed how we collected data and manipulated it into a 

usable form.  We then detailed construct validity issues where the data we collected 

disconnected from our theoretical expectations.  Next, we showed how to use a dummy 

variable OLS regression to create a FH Program cost model.  In addition, we discussed 
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how to compare our models with the Air Forces current proportional model.  Finally, we 

outlined a key assumption, stationarity, which the majority of past CPFH research has 

ignored and showed how we plan to test for it.  In the next chapter we provide our results. 

 

 

  



62 
 

Chapter IV:  Analysis and Results 
 
  
 

In this chapter we provide analysis and results for each of the five research 

questions detailed in Chapter I and again in Chapter III.  First, we extend the work done 

by Unger (2008) and Hildebrandt (2007).  We use deductive reasoning to move from 

their generalized models and attempt to determine if it is more appropriate to estimate the 

FH Program costs for different airframes separately as opposed to a common model.  

Second, we generate net cost, charges, and credits models and find significant predictors 

for each of the three types of cost over various levels of aggregation.  Third, we shift our 

analysis to question the appropriateness of the proportional Flying Hour model 

specification currently in use by the U. S. Air Force.  Fourth, we evaluate alternative 

dependent variables in an attempt to increase forecast accuracy.  Specifically, we 

consider a model in which we predict charges and credits separately and then combine 

them to arrive at net cost.  Finally, we compare the forecast accuracy of our models and 

the proportional model. 

 
 

Common versus Individual Airframe Flying Hour Program Cost Models 

 We first estimate a panel model like Unger (2008) using data from the Air Force 

by quarter level of aggregation with net costs as the dependent variable and flying hours, 

age, landings, and sorties as the independent variables.  We use this level of aggregation 

as a starting point because the Air Force by annual level of aggregation only contains 90 

observations which is an insufficient amount for this part of the analysis.  Also, we only 
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analyze eight of the nine MDS groups because the B-2A contains negative net costs, 

which does not work with our current specification.   

Immediately we find problems with multicollinearity.  Table 6 is a correlation 

matrix for all of the variables in this regression.  Of note are the extremely high 

correlations between flying hours, sorties, and landings.   

Table 6:  Correlation Matrix of Variables at the Air Force by Quarter Level of Aggregation 

  CREDITS CHARGES AGE LANDINGS SORTIES FH 
NET_COSTS 0.8198 0.9554 -0.3343 0.5975 0.6785 0.5105 
CREDITS  0.9524 -0.2715 0.2508 0.3099 0.1589 
CHARGES   -0.3180 0.4475 0.5212 0.3538 
AGE    -0.1165 -0.2999 -0.0173 
LANDINGS     0.9591 0.9695 
SORTIES      0.9016 

 

Calculating Variance Inflation Factors (VIF) for the independent variables, we 

find that each of the usage variables has a VIF greater than 50 and the age variable has a 

VIF of 20.  Common VIF rules of thumb vary between acceptable levels of equal to or 

less than 5 or 10.  It is possible that the variation between the usage variables might 

become greater at a lower level of aggregation, but we find that at lower levels of 

aggregation the VIF’s only decrease slightly.  Consequentially, we find it inappropriate to 

include more than one of the usage variables in light that doing so would invalidate our 

ability to determine the effects of individual predictors.  We use flying hours because it is 

the variable of greatest use in answering our research questions.   

The P-value for the test statistic shown in Table 7 shows that we reject the IPS 

test null hypothesis that the natural log of net costs is non-stationary at the 0.01 level. 
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Table 7:  Panel Unit Root Test of Net costs for the Air Force by Quarter Level of Aggregation 

Panel unit root test: Summary   
Series:  ln(Net Costs)   
Sample: 1998Q1 2007Q4   
Exogenous variables: Individual effects, individual linear trends 
Automatic selection of lags based on SIC: 0 to 2 
     
        Cross-  
Method Statistic Prob. sections Obs 

     
Im, Pesaran and Shin W-stat  -5.39684  0.0000  8  307 
     
      

 

The results from the Air Force by quarter fixed effects panel model are shown in 

Table 8.  In this model we include a lagged dependent variable as a regressor because 

without it the model exhibits first order autocorrelation as evidenced by a Durbin –

Watson statistic of 0.81 which is significant at the 0.05 level.   

Table 8:  Air Force by Quarter Net Cost Fixed Effects Panel Model 

Dependent Variable: ln(Net Costs)  
Sample (adjusted): 1998Q2 2007Q4  
Periods included: 39   
Cross-sections included: 8   
Total panel (balanced) observations: 312  
Robust Standard Errors 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     constant 3.347538 0.825784 4.053768 < 0.001 

ln(FH) 0.365704 0.061534 5.943074 < 0.001 
age/365 0.021176 0.006070 3.488610 < 0.001 

ln(net costs((-1)) 0.588651 0.056065 10.49939 < 0.001 
     
      Effects Specification   
     
     Cross-section fixed (dummy variables)  
     
     R-squared 0.954134              Adjusted R-squared  0.952611 
     
       

All of the predictor variables are significant at the 0.01 level of significance and 

are positively related to net costs.  We can infer that hours have a ceteris paribus effect on 
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net costs such that as the flying hours for the airframes analyzed increase by 1 percent, 

net costs increase by 0.37 percent.  In addition, as age increases by one year net costs 

increase by 2.1 percent.     

We now turn away from the fixed effects panel model which estimates a single, 

averaged coefficient for each MDS group to a LSDV model so that we may assess the 

significance of cross section specific factors by allowing for differences in intercepts.  

The results are displayed in Table 9.  In this regression the KC-135 is the base group and 

the dummies represent differences in intercepts from the KC-135.  Note that the 

coefficients for age, flying hours, and lagged net costs are all equivalent to those found in 

the fixed effects panel model.   

Table 9:  Air Force by Quarter Net cost Model w/ MDS Specific Intercepts 

Dependent Variable: ln(Net Costs)  
Sample (adjusted): 1998Q2 2007Q4  
Periods included: 39   
Cross-sections included: 8   
Total panel (balanced) observations: 312  
Robust Standard Errors 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     constant 2.304970 0.765978 3.009187 0.0028 

A10 0.777641 0.158403 4.909250 < 0.001 
B1B 1.647484 0.261378 6.303064 < 0.001 

B52H 0.673461 0.108620 6.200173 < 0.001 
C5 1.234427 0.207214 5.957271 < 0.001 

F15CD 1.333260 0.232392 5.737119 < 0.001 
F15E 1.495909 0.273645 5.466603 < 0.001 

F16CD 1.178360 0.248631 4.739386 < 0.001 
ln(FH) 0.365704 0.061534 5.943074 < 0.001 

age/365 0.021176 0.006070 3.488610 < 0.001 
ln(net costs((-1)) 0.588651 0.056065 10.49939 < 0.001 

     
     R-squared 0.954134             Adjusted R-squared .952611 
     
       

Not only is the intercept for the KC-135 significant at the 0.01 level, but we also 

find that each of the other air frame’s intercept is significantly different than that of the 
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KC-135.  We can further analyze differences in cost estimating relationships between the 

different airframes by allowing for differences in age, flying hours, and the lagged 

dependent variable across airframes.  However, with only 312 observations and the 

inclusion of interaction variables we move to a lower level of aggregation and estimate at 

the Air Force by month level.   

 At this lower level of aggregation and for this particular research question we 

remove the B-2A along with the B-1B because they both contain negative net costs which 

are not appropriate for this section of the analysis.  We again start with the IPS test for 

unit roots and find that at this level of aggregation the null of a non-stationary series is 

rejected at the 0.01 level of significance.  We follow the same procedures here as we did 

before with the Air Force by quarter level of aggregation by first estimating a common, 

panel model.  Table 10 shows the results from the Air Force by month level of 

aggregation fixed effects panel model. 

Table 10:  Air Force by Month Net Cost Fixed Effects Panel Model 

Dependent Variable: LN_NET_COSTS  
Method: Panel Least Squares   
Sample (adjusted): 1998M02 2007M12  
Periods included: 119   
Cross-sections included: 7   
Total panel (balanced) observations: 833  
Robust Standard Errors 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     constant 4.853955 0.588972 8.241406 < 0.001 

ln(FH) 0.287524 0.038522 7.463947 < 0.001 
age/365 0.027936 0.003751 7.448205 < 0.001 

ln(net costs((-1)) 0.520181 0.036847 14.11748 < 0.001 
     
      Effects Specification   
     
     Cross-section fixed (dummy variables)  
     
     R-squared 0.934513           Adjusted R-Squared 0.933796 
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The coefficients from this model are slightly different than those computed in the 

Air Force by quarterly level of aggregation, but calculating confidence intervals reveals 

that they overlap and none of the variables are significantly different over the separate 

levels of aggregation.  The partially factored LSDV regression for the Air Force by 

month level of aggregation is shown in Table 11.  The inferences gained from this 

regression mirror those from the same model at the Air Force by quarterly level of 

aggregation.    

Table 11:  Air Force by Month Net Cost Model with MDS Specific Intercepts 

Dependent Variable: ln(Net Costs)  
Method: Panel Least Squares   
Sample (adjusted): 1998M02 2007M12  
Periods included: 119   
Cross-sections included: 7   
Total panel (balanced) observations: 833  
Robust Standard Errors 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     constant 3.752928 0.540911 6.938161 < 0.001 

A10 0.919024 0.096377 9.535692 < 0.001 
B52H 0.550033 0.071513 7.691369 < 0.001 

C5 1.352341 0.120276 11.24368 < 0.001 
F15CD 1.594138 0.144536 11.02933 < 0.001 
F15E 1.749015 0.164101 10.65813 < 0.001 

F16CD 1.542636 0.162894 9.470203 < 0.001 
ln(FH) 0.287524 0.038522 7.463947 < 0.001 

age/365 0.027936 0.003751 7.448205 < 0.001 
ln(net costs((-1)) 0.520181 0.036847 14.11748 < 0.001 

     
     R-squared 0.934513               Adjusted R-squared 0.033796 
     
      

  We now evaluate differences in cost estimating relationships across the MDS 

groups.  We test for a difference between the A-10 groups and the other groups by testing 

the joint significance of the cross section specific interaction variables.  
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 Given equation 12: 

( ) ( ) ( )
( ) ( )

0 1 2 3 , 1

0 1 2 3 , 1

ln net costs ln FH age ln net costs

A10log FH A10age A10 ln net costs
itit it i t

it itit i t

β β β β

δ δ δ δ ε
−

−

= + + + +

+ + + +
 (12) 

 The null, H0:  δ1 = 0, δ2 = 0, δ3 = 0, is evaluated against the alternative that there is no 

difference in the effect of age, flying hour, or a lagged period of net costs on net costs.  

We do not include δ0 because we already found evidence of significantly different 

intercepts between the cross sections and do not want to bias the joint test with the power 

of the intercept.  First we estimate the unrestricted model from equation 12 and then 

estimate the restricted model where all of the A-10 interaction variables are absent.  From 

the unrestricted and restricted models we calculate an F-statistic of 9.42 which is 

significant with (3, 825) degrees of freedom at the 0.01 level.  Accordingly, we reject the 

null of similar cost estimating relationships between the A-10 and the other MDS groups. 

We repeat this same procedure for each of the six other MDS groups we analyze in this 

portion of the study and the results are summarized in Table 12.   

Table 12:  Summarized Results for Test of Different Cost Estimating Relationships across MDS 
Groups 

t-test A10 B52H C5 F15CD F15E F16CD KC135 

Separate Constant X X* X*   X* X* X* 
ln(FH) X* X* X X* X* X* X 

age X* X*   X* X* X* X* 
lagged D.V. X* X* X* X* X* X* X* 

F-test 
              

Slope differences X* X* X* X* X* X* X* 
x = significant at the .05 level      
x* = significant at the .01 level      

 
 The results show that for each group the interaction variables are individually 

significant at the 0.05 level except for the C-5 age interaction variable.  In addition, the 

analysis provides further support for estimating separate cost estimating relationships for 
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each of the groups with significant joint tests of the interaction variables for every MDS 

group at the 0.01 level.   

While we have found statistically significant evidence to support estimating 

separate cost estimating relationships for each MDS group, we find it important to note 

the non trivial size of the differences as well.  Because our models are estimated in log 

space it is difficult to comprehend the magnitude of the differences.  For example, the 

LSDV regression including only intercept differences at the Air Force by month level of 

aggregation supports a ceteris paribus interpretation that net cost for the A-10 is 0.92 

more than the KC-135 in log space.  When we use these models to forecast the cost of the 

FH Program we are dealing with millions of dollars for any given month.  One million 

dollars in unit space translates roughly to 13.82 in log space.  Adding the 0.92 difference 

for the A-10 estimate in log space increases a million dollar forecast to over 2.5 million 

dollars in unit space.  So we see that very small differences in log space can result in 

large differences when we back transform the forecast.   

 
 
Which Variables are Significant Predictors of Flying Hour Program Cost 
 

From the previous section we have already found that we cannot use the number 

of landings and sorties as we had hoped because of their high degree of correlation with 

flying hours.  Furthermore, we have also seen various examples where flying hours, age, 

and a lagged dependent variable have proven to be significant predictors of net costs.  

Here we further explore the significance of a number of variables to predict net costs, 

charges, and credits for each of the MDS groups across five levels of aggregation.   



70 
 

We start by looking at the Air Force by month level of aggregation and estimate 

each MDS separately using equation 13: 

( ) ( ) ( )0 1 2 3 t 1ln(costs)    ln FH   age ln costs seasont i t itt t
β β β β δ ε−= + + + + +  (13) 

Here we exclude B-1B and B-2A net cost models because they have negative net 

cost at this level of aggregation.  The costs variable takes on the form of net cost, charges 

and credits to create three different models.  The βi are the normal coefficients for 

previously discussed variables and season is a vector of monthly dummy variables with 

October as the base.  Using the net cost A-10 model as an example, a priori estimation 

we check for unit roots and find that we reject the null of a non-stationary series using the 

ADF test.  The results of the ADF test for the A-10 are found in Table 13.   

Table 13:  A-10 ADF Test of Net Cost for Air Force by Month Level of Aggregation 

Null Hypothesis: ln(Net Costs) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 0 (Automatic based on SIC, MAXLAG=12) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -7.328989  <0.001 

Test critical values: 1% level  -4.036983  
 5% level  -3.448021  
 10% level  -3.149135  
     
     *MacKinnon (1996) one-sided p-values.  

 

With evidence of net cost as a stationary series we proceed with the model 

estimation.  The natural log of flying hours, age, and a lagged dependent variable are all 

significant at the 0.05 level.   In addition, November and December are both significant at 

the 0.05 level demonstrating significant seasonal effects for the A-10.  The results of the 

estimated model are shown below in Table 14.   
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Table 14:  A-10 Net Cost Model for the AF by Month Level of Aggregation 

Dependent Variable: ln(NET_COSTS)  
Method: Least Squares   
Sample: 1998M02 2007M12   
Included observations: 119   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     constant 6.412204 1.492056 4.297562 < 0.001 

ln(FH) 0.372604 0.111186 3.351177 0.0011 
age/365 0.045358 0.007243 6.261917 < 0.001 

ln(net costs((-1)) 0.345550 0.079170 4.364640 < 0.001 
Nov or Dec -0.122463 0.049616 -2.639814 0.0112 

     
     R-squared 0.678734            Adjusted R-squared 0.664519 
     
      

 We use test for heteroskedasticity, serial correlation, and normality to assess the 

OLS assumptions and find that each of the assumptions are valid for this model.  A brief 

discussion of the diagnostic tests and their results can be found in Appendix B.  We 

continue the same methods to estimate separate net cost, charge, and credit models for 

each MDS in the Air Force by month level of aggregation.  In each model we start with 

the full complement of regressors and eliminate non significant variables to achieve 

parsimonious models. 

We also estimate models for the four remaining levels of aggregation, but use 

fixed effects panel models as described in the previous chapter.  The β coefficients do not 

vary across cross sections and the reported constant is the average of the fixed effects.  

For the Air Force by quarter level of aggregation we use a common fixed effects panel 

model with the MDS groups representing the cross sections.  For the MAJCOM by year 

level of aggregation we again estimate a common fixed effects panel model, but this time 

use MDS groups by MAJCOM as the cross sections.  For the MAJCOM by quarter and 
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by month levels of aggregation we estimate each MDS group separately, but use fixed 

effects panel models with the major commands as the cross sections.   

Of the 56 models we created, the a priori tests for stationarity never failed to 

reject the null of non-stationary series.  For the a posteriori diagnostic tests we rely on 

Newey-West Heteroskedasticity and Autocorrelation (HAC) consistent standard errors 

for the time series models and White robust standard errors for the panel models if either 

heteroskedasticity or serial correlation is present.  We utilize robust standard errors for 

every panel model and for some of the time series models.  Those time series models that 

required robust standard errors are reported in Appendix C along with the specific results 

for the remaining net cost, charge, and credit models. 

Flying hours is a significant predictor in each of the 22 net cost models, 16 of the 

17 charges models, and 14 of the 17 credits models.  In general, the results show strong 

support for the use of flying hours as a predictive variable.  In addition, the highest 

estimated flying hour coefficient is 0.724 and is from the Air Force by quarter net cost 

model.  These results indicate that all three dependent variables are positively related, but 

inelastic with respect to flying hours, which we touch more on in the next section of this 

chapter.   

The age variable is a significant predictor in 19 of the 22 net cost models, 15 of 

the 17 charges models, and 15 of the 17 credits models.  Six of the seven times the age 

variable was insignificant can be attributed to the C-5 and the other event can be 

attributed to the F-15E in the MAJCOM by quarter net cost model.  Holding the number 

of flying hours and lagged net cost constant the effect of a one year increase in age on net 

cost ranges from a 2.7 percent increase in net cost for the F-15 Air Force by month model 
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to a 9.3 percent increase in net cost for the B-52H Air Force by month model.  The ceteris 

paribus effect of age on net cost for both the Air Force by quarter and MAJCOM by year 

levels of aggregation support an average increase in net cost of 3.4 percent for a one year 

increase in age.   

Next we find that using a lagged dependent variable to predict itself is significant 

in every model except the KC-135 MAJCOM by quarter charges model.  In addition to 

being a significant predictor, including a lagged dependent variable also helps meet OLS 

assumptions in many cases.  Net cost, charges, and credits are all positively related, but 

inelastic for every model with respect to their own lagged values.  We also created credit 

models with lagged charges instead of lagged credits with the idea that higher costs might 

be associated with higher numbers of parts purchased.  As the purchased parts break 

more opportunities for credits should arise as the broken parts are refurbished.  In the end 

the lagged credit variable dominated the lagged charges variable in the credit models. 

Finally, the results support significant seasonal effects at the monthly level of 

aggregation.  Each of the significant months has a small negative effect on the dependent 

variable in log space, but as we have seen in earlier sections the difference can result in 

large dollar amounts in unit space.  November is significant more often than any other 

month with significance in 57 percent of the monthly models.  Aside from November, 

September and December are also significant in many of the monthly models.  Past 

studies have attributed seasonal effects to the fiscal cycle, but we hypothesize that 

November and December are commonly significantly less than other months because of 

the national holidays observed by the Air Force.  With the exception of combat areas 
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many bases virtually shut down during Thanksgiving and Christmas.  Therefore, it makes 

sense that those months would be associated with lower costs. 

In summary, we have found the log of flying hours, age, lagged cost variables, 

and seasonal effects to be significant predictors of the various types of cost we analyze.  

The significance and directional relationship of the discussed independent variables with 

the dependent variables is generally robust to all levels of aggregation we assessed.   

 
 
Evaluating the Appropriateness of the Proportional Model Specification 
 

We now turn to testing the validity of the proportional model.  We rely on the net 

cost models generated in the previous section to test the assumption of the proportional 

model which assumes that every hour flown increases FH Program costs by the same 

amount.   

The null hypothesis is H0:  βFH = 1 and failure to reject the null would support the 

specification of the proportional model because we would experience unit elasticity 

between flying hours and costs.  In other words, a one percent increase in flying hours 

would result in a ceteris paribus one percent increase in net cost.  To understand why this 

test works we first assume that the age variable is log transformed like the other 

variables.  Transforming the age variable does not affect the other coefficients, but does 

change the size and interpretation of its own coefficient as well as the size of the 

intercept.   

The proportional model’s specification states that holding other variables 

constant, as we increase flying hours by one unit, net cost increase by some constant 
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factor.  Back transforming our previous models from log space to unit space we achieve 

the multiplicative model shown in equation 14: 

net costt = (eβ0)(FHt
β1)(aget

β2)(net costst-1
β3)   (14)  

Evaluating equation 14 we see that if we hold all else constant and ask ourselves how net 

cost change as we increase flying hours by one hour we find that the model basically 

reduces to net costs  =  ω(FHβ1), where the other terms are held constant and based on the 

distributive property their product can be reduced to ω.  It is apparent that the estimate of 

βFH will determine how costs change as we increase flying hours.  If βFH = 1, then a one 

unit increase from any number of flying hours will increase costs proportionally by ω.  If 

βFH < 1 then a one unit increase in flying hours will increase costs, but it does so at a 

diminishing rate relative to the amount of flying hours flown and to be flown.  For 

example, if βFH was estimated to be 0.5 and we increase the number of flying hours from 

10 to 11 we find that cost would increase by 0.154ω.  If we again increase the number of 

flying hours by one unit, but this time the increase is from 11 to 12 we find that costs 

increase by 0.147ω.  We use the parsimonious models discussed in the previous section 

to obtain a ceteris paribus effect of flying hours on net cost and to reduce third variable 

bias.  The confidence intervals around βFH for each MDS are shown in Table 15.   

Table 15:  Summarized Test Results of Proportional Model FH Assumption 

MD FH 
 

S.E. 
 

99% C.I. 
A-10 0.37 0.11 0.08  -   0.66 

B-52H 0.30 0.08* 0.09  -   0.52 
C-5 0.18 0.06* 0.01  -   0.35 

F-15C/D 0.39 0.10 0.13  -   0.65 
F-15E 0.50 0.16* 0.08  -   0.93 

F-16C/D 0.42 0.10 0.15  -   0.69 
KC-135 0.38 0.08 0.16  -   0.60 

119 Degrees of Freedom 
*Newey-West HAC robust standard errors estimated 
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Based on the confidence intervals it is obvious that we reject the null of a 

proportional relationship for each MDS.  The F-15E is the only MDS that comes close to 

unit elasticity in the 99 percent confidence interval.  We repeat this same procedure for 

the MAJCOM by quarter and the MAJCOM by month levels of aggregation, but use 

panel models with fixed effects to combine the MAJCOM cross sectional effects for each 

MDS group like we did in the previous section.  These two are the only other levels of 

aggregation beside the AF by month level that allow us to estimate MDS specific flying 

hour coefficients with an arguably sufficient number of observations to carry out the 

tests.  The results from these two levels of aggregation can be found in Appendix D and 

are robust with respect to level of aggregation.  Of the 22 confidence intervals calculated 

over the various levels of aggregation, only the F-15C/D in the MAJCOM by quarter 

level of aggregation fails to provide significant evidence against the proportional model.  

Furthermore, it only fails to do so at the 0.1 level of significance.  In short, our results 

provide substantial evidence against the proportional model assumption that net cost 

increase by a constant factor with respect to flying hours. 

 

Forecasting Performance of the Net Cost and Charges minus Credits Models 

 Forecasts for both the net cost and charges minus credits models are dynamic one 

step ahead forecast for each level of aggregation below the annual level.  By dynamic we 

mean that forecasts use actual lagged cost values for the first forecasted period, but then 

use forecasted values for lagged cost values in further forecasts until the entire year is 

estimated.  The MAJCOM by year forecast is a static one step ahead forecast.  The 

forecast period is from Fiscal Years 2005 through 2007.  We evaluate the accuracy of the 
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forecast using the RMSE of each MDS group at two levels.  First we evaluate the 

accuracy of each forecast at the level of aggregation corresponding to the data used in the 

models formulation.  This evaluation simulates each model’s ability to forecast within the 

year of execution.  Second we aggregate lower levels of aggregation to annual levels.  

This aggregated evaluation simulates the models’ ability to forecast for an entire budget 

year.  In addition to evaluating the forecasting accuracy of the individual MDS groups, 

we also aggregate the annual forecasts into overall forecasts which represent the 

projected costs of our sample Air Force fleet.  Both annual and lower level analysis are 

important because the Air Force has a need to create annual budgets, but also conducts 

marginal analysis when executing within a fiscal year.   

 The results show that each model has benefits and disadvantages, but we are 

unable to conclusively state that one model is superior.  The net cost model has a lower 

RMSE for individual MDS groups 62 percent of the time when comparing forecasts 

associated with less than annual forecasts.  In addition, the net cost model has a lower 

RMSE for the individual MDS groups 70 percent of the time when comparing annual 

forecast.  However, the charges minus credits model has a lower RMSE in three of the 

four forecast comparisons of overall annual estimates when combining MDS groups to 

simulate the fleet’s budget.   

Thus far we have only discussed forecasting accuracy based on the relative size of 

the forecast errors of the competing models.  With this in mind, it is quite possible that 

the RMSE of one forecast is only trivially better than the other.   
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Figure 12 shows the annual forecasts from our competing models and the actual 

net costs based on the Air Force by month level of aggregation as the models’ underlying 

data.  

 

 

Figure 12:  Comparison of Non-Proportional Model Annual Forecasts 

 
 

Figure 12 helps to illustrate that while one model may have a lower RMSE, it 

appears as though the forecast from each models are generally very close.  Therefore, we 

rely on the modified DM statistic to determine if the difference in forecast is due to 

chance rather than being significantly different than zero.  Of the 35 instances in which 

the net cost model had a lower RMSE the difference was only significant 5 times.  Four 

times for individual MDS specific forecast at lower than annual levels and once for 

individual MDS specific forecast at the annual forecast level.  Of the 20 times the charges 
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minus credits model had a lower RMSE the difference was significant 4 times.  Twice for 

less than annual MDS specific forecast and twice for the overall annual forecast.   Table 

16 displays the RMSE and instances where the forecast were significantly better for a 

small subset of the forecasts.  In Appendix E we provide results for RMSE for all the 

forecasts. 

Table 16:  Subset of Forecast Accuracy Results for Net Costs and Charges minus Credits Models 

 

 Based on these results the net cost model appears to do better with MDS specific 

forecast, however only a handful of its differences are significantly better than the 

charges minus credits model.  From the standpoint of estimating the overall annual 

budget the charges minus credits model has a slight advantage with two significantly 

better forecasts in a total of only four calculated overall forecasts.  In addition, in many 

instances we were unable to create a net cost model for the B-1B and the B-2A because 

of the presence of negative net costs and our model specification.  The charges minus 
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credits model conveniently eradicates this problem by forecasting charges and credits 

separately to arrive at a net cost figure, but does create extra effort for forecasters because 

it requires extra forecasts.  For these reasons we conclude that there is insufficient 

evidence of preferring either the net cost or charges minus credits model in all 

circumstances and that the benefits and disadvantages of each model may help forecasters 

decide which to use.     

 
 
Proportional versus Non-Proportional Model Forecasting Performance 
 
 Because we were unable to determine which of the non-proportional models has 

superior forecasting ability we compare both of them to a proportional model based on 

published factors and a proportional model based on factors calculated from our data set.  

The proportional model based on factors calculated from our data set has the lowest 

RMSE 35 out of the 61 forecasts.  Only three of those forecasts are statistically 

significantly better than both of the non-proportional models’ forecasts, however.  In 

general, the non-proportional models performed better than the proportional model based 

on the published factors by outperforming for 45 of the 61forcasts.  Out of the 45 times 

the non-proportional model was better the difference in forecast was only significant 9 

times.  The full complement of forecasting accuracy results and the comparison between 

each model for each forecast level can be found in Appendix F.  Based on the general 

insignificance of the different forecasting models we again conclude that we are unable to 

confidently claim the superiority of one method over another.  In addition, we are unable 

to determine trends in which one model is better than the other as we had previously 

suggested in the analysis of the net cost versus charges minus credits model.   
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 We did find that in general the non-proportional models we created over predict 

and the proportional model calculated from our data set under predicts net cost.  Figure 

13 plots three of the competing models and the actual net cost for individual MDS 

specific forecast using the AF by month as the underlying data.   

 

Figure 13:  Comparison of Annual Forecast from Proportional and Non-Proportional Models 

 

For this forecast level the non-proportional models over predict cost roughly 60 

percent of the time and the proportional models under predict roughly 74 percent of the 

time.  We would expect this to occur for the proportional models because the actual 

flying hours have generally decreased over the years between Fiscal Years 2003 and 

2007 as evidenced in Figure 14. 
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Figure 14:  Flying Hours from FY03 to FY07 

Based on this point and the inability to determine any single model as a superior 

forecasting model, we believe that the two models can potentially be used in conjunction 

with each other, using one as a floor and the other as a ceiling.  Though, this prospect 

should only be considered in the event that flying hours continue to decrease.  If flying 

hours either remain the same or increase then the prediction error of the proportional 

model will also change.  For example, if the number of hours that are projected to be 

flown in Fiscal Year 2008 are greater than the average annual hours flown in Fiscal Years 

2006 and 2007 the proportional models will most likely over predict FH Program costs.     

Chapter Summary 
 
 In this chapter we have answered each of our research questions.  First, we found 

evidence to support the estimation of cost relationships separately for each MDS group.  

As a result we then created various cost estimating relationships for each MDS group at 
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various levels of data aggregation.  We found that flying hours, age, and past cost data 

are generally significant predictors of cost.  In addition, we found some evidence of a 

holiday seasonal effect on cost.  We then used the estimated parameters for the flying 

hour variable and determined that the cost elasticity with respect to flying hours is 

inelastic, supporting a non-proportional relationship between flying hours and cost.  

Finally, we compared the forecasting accuracy of non-proportional net cost and charges 

minus credits models against each other and against two proportional models that follow 

the same methodology of the Air Force’s current FH Program estimating model.  In the 

next chapter we use our findings to discuss policy implications and discuss the strengths 

and limitations of this study.        
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Chapter V:  Conclusions 
 
 

In this chapter we highlight the strengths and limitations of our findings in an 

effort to guide further research in this area.  In addition, we discuss how our findings can 

potentially result in policy implications.   

 

Strengths, Limitations, and Policy Implications 
 

Because the FH Program is a central and reoccurring piece of the Air Force’s 

annual budget and because the Air Force needs seek out the most efficient means of 

managing its resources, we evaluated the Air Force’s current method of forecasting costs 

associated with the FH Program.  After conducting a literature review to identify what 

previous research had to offer, we built econometric models using various OLS 

regression techniques to ascertain which variables are significantly related to FH Program 

costs and how those costs should be predicted.   

Some of the previous literature had created models similar to ours, but different in 

the point that they were so top-level that they missed the innate differences between the 

different types of aircraft.  However, these very top level models have merit in the sense 

that they are very easy to use because one model captures every airframe.  Savings in 

manpower and ultimately dollars might result from the reduced amount of effort required 

to estimate the common models.  However, we show empirically that the relationship 

between cost and predictor variables is not equal across different types of airframes.  

Budget estimates may take more time in the estimation process, but ultimately time and 

money would be saved as a result of more efficient budget estimates when estimating 

different types of airframes separately.   
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 Of the many variables evaluated by previous research flying hours and age 

appeared to occur and be significant most often.  We also found flying hours and age to 

be positively related significant predictors of FH Program costs.  In addition, we found a 

holiday seasonal effect where costs are generally lower in the months of November and 

December.  As expected we found past values of costs to be positively related to current 

values of costs.  Our findings are very robust in that we estimate many of our models 

over many different levels of aggregation and for every level of aggregation the results 

are generally the same.  Our forecasting models are intuitive.  It stands to reason that 

costs should increase as airframes get older and as they get used more.  Based on 

limitations of our modeling techniques we were not able to control for the dynamic 

relationship found in some of the previous literature, however.  For reasons discussed in 

Chapter II, it would be beneficial to forecast costs based on the ability to control for the 

interconnected relationship between flying hours, landings, and sorties.  It may be 

possible to use factor analysis and produce a linear combination of the three variables 

into a single usage variable.  In this way it might be possible to control for their dynamic 

relationship with costs and how it differs across airframes.  

 Previous literature had conflicted findings with respect to the relationship between 

flying hours and costs.  We provided empirical evidence supporting a non-proportional 

relationship.  Based on our findings the Air Force should reevaluate not only the way it 

budgets the FH Program, but also how it conducts marginal analysis for changes to 

execution year flying hour amounts.  The non-proportional relationship is positive, but 

diminishing so that the effect of additional hours on cost dwindles as more hours are 

flown.  Along those same lines, our models assume that the non-proportional relationship 



86 
 

between hours and cost starts anew every fiscal year.  In reality, the non-proportional 

relationship probably follows a lifetime curve and does not start over every fiscal year.  A 

bright spot for further research might be to evaluate cumulative hours flown over a 

lifetime versus hours flown in a given period.    Nonetheless, the Air Force may want to 

alter their forecasting method so that they can control for the variables we have found to 

be significant predictors of FH Program Costs and so that they can control for the non-

proportional relationship between flying hours and costs. 

Previous research that delved into lower levels of aggregation revealed limitations 

to the log-log model specification that we so highly touted.  Based on occurrences in 

which the co-movement of charges and credits veered from its normal relationship to 

create outlier and negative observations we produced a viable work around by forecasting 

charges and credits separately.  We found previous manipulations that attempted to 

account for negative net costs biased coefficients and forecasts.  Based on tests for 

forecast accuracy we found the net cost model to generally perform no better than our 

charges minus credits model.  A limitation of our charges minus credits model is that we 

use very simplistic models which estimates the charges and credits separately then add 

the point estimates together.  As a result our charges minus credits model misses a 

portion of the variance between charges and credits.  Further research may improve upon 

the charges minus credit model by using more elegant techniques such as simultaneous or 

systems methods that estimate the parameters for each of the dependent variables at the 

same time. 

We finalized our research efforts by testing the forecasting accuracy of four 

competing models.  We not only used loss functions like the previous literature, but we 
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also added a new component to it with the modified DM statistics to test if the difference 

in the forecast errors were statistically different from zero.  However, our results were 

mixed and we were unable to determine a single superior forecasting model.  In Chapter 

IV we suggested that the proportional and non-proportional models be used in 

conjunction to obtain a ceiling and possible floor for the budget.  With that information 

Air Force leaders would better understand the risk inherent in the annual budget.  A 

major limitation of our forecast tests was that we could not obtain actual CPFH factors 

used to estimate the President’s budget.  We suggest that the Air Force initiate 

moratoriums on FH Program cost estimates.  The moratoriums would only require 

minimal work and with it valuable information as to the true accuracy of the Air Force’s 

model could be learned.  In addition, if the factors also contained information about the 

underlying data used in its calculation researchers would easily be able to compare 

forecasting methods and be better capable of making suggestions as to which model the 

Air Force should use.  In the future, if multiple methods are used to estimate costs and 

moratoriums performed the Air Force would gain a clear understanding as to which 

model is a better tool.   

Finally, as part of the CAM initiative, in Fiscal Year 2009 the Air Force changed 

the way the Material and General Support Divisions of the Air Force Working Capital 

Fund are reimbursed for FH Program Supplies.  In short, rather than paying for parts at 

the base level, the charges and credits are now managed centrally.  Air Force leaders 

expect the transition to be seamless and urge maintenance organizations to continue 

moving parts through the repair cycle in a timely manner, limit purchases to items and 

quantities required to accomplish the mission, and continue to utilize the AFREP 
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program.  We question the idea of a seamless transition based on the lack of incentives 

provided for the base level maintenance organizations.  Prior to CAM these organizations 

were incentivized to repair authorized parts in cost effective ways because they were 

often able to utilize AFREP credits to fund other items.  In addition, the base level 

maintenance organizations were limited by their base level budget.  With funds now 

managed at a centralized location it is extremely important for the Air Force to ensure the 

base level organizations are fiscally responsible.  We hypothesize that FH Program Costs 

will potentially increase as a result of a lack of incentives for maintenance organizations 

to find ways to generate credits through the AFREP program.  After the centralized 

funding process has been in place for a period of time we suspect a policy analysis of the 

impact that centralization has on FH Program costs would be interesting.  
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Appendix A:  Cost Allocation Mismatches for Majcom and Base Levels of 
Aggregation  

 

MDS 
Group 

Level of 
Aggregation Total Net Costs Net Costs 

Not Matched 
% Net Costs 

Mismatch 

Delta Between 
MAJCOM and Base 

Level of 
Aggregation 

A-10 MAJCOM $1,234,938,492 $252,368 0.02% 
15.63% A-10 Base $1,234,938,492 $193,258,475 15.65% 

B-1B MAJCOM $2,586,551,422 $602,333 0.02% 
19.51% B-1B Base $2,586,551,422 $505,346,681 19.54% 

B-2A MAJCOM $261,733,496 $30,894 0.01% 
0.02% B-2A Base $261,733,496 $72,335 0.03% 

B-52H MAJCOM $946,183,323 $168,393 0.02% 
13.27% B-52H Base $946,183,323 $125,690,980 13.28% 

C-5 MAJCOM $2,061,928,351 $908,760 0.04% 
8.97% C-5 Base $2,061,914,922 $185,857,210 9.01% 

F-15C/D MAJCOM $5,254,344,780 $51,894 0.00% 
-0.05% F-15C/D Base $5,254,344,780 -$2,312,609 -0.04% 

F-15E MAJCOM $3,404,238,774 $159,561 0.00% 
5.14% F-15E Base $3,404,238,774 $175,259,700 5.15% 

F-16C/D MAJCOM $4,632,602,156 $143,760 0.00% 
0.93% F-16C/D Base $4,632,602,156 $43,328,047 0.94% 

KC-135 MAJCOM $757,826,422 $4,078,703 0.54% 
21.66% KC-135 Base $757,826,422 $168,214,983 22.20% 
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Appendix B:  Sample of Time Series Regression Diagnostic Tests 
 
 
 
A-10 Net Cost Model White Test for Heteroskedasticity 
 
 White’s test for heteroskedasticity tests for an unknown general form of non 

constant variance.  The null hypothesis is that the residual values are homoskedastic.  

Based on the F-statistic with (3,115) degrees of freedom the test fails to reject the null of 

constant variance.   

Heteroskedasticity Test: White  
     
     F-statistic 1.301598     Prob. F(3,115) 0.2774 

Obs*R-squared 3.907919     Prob. Chi-Square(3) 0.2716 
Scaled explained SS 3.340706     Prob. Chi-Square(3) 0.3420 

     
          

Test Equation:    
Dependent Variable: RESID^2   
Method: Least Squares   
Sample: 1998M02 2007M12   
Included observations: 119   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     constant 0.095633 0.146655 0.652095 0.5156 

(ln(FH))^2 0.000774 0.001242 0.623514 0.5342 
(AGE/365)^2 -8.63E-06 3.51E-05 -0.246099 0.8060 

(ln(NET_COSTS(-1)))^2 -0.000491 0.000494 -0.993796 0.3224 
 

White’s test for heteroskedasticity is repeated for each time series regression.  For 

the panel models we use a test suggested by Kennedy that tests for differences between 

the variance of the cross sections.  A full explanation of this test is detailed by Kennedy 

(2008:295). 

A-10 Net Cost Model Breusch-Godfrey LM Test for Serial Correlation 
 
 The null hypothesis of the Breusch-Godfrey Serial Correlation LM Test is that the 

residual values are not serially correlated.  Based on the low F-statistic with (6,109) 
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degrees of freedom there is very little evidence against the null and so we fail to reject 

that the residuals are not serially correlated. 

Breusch-Godfrey Serial Correlation LM Test:  
     
     F-statistic 0.794950     Prob. F(6,109) 0.5758 

Obs*R-squared 4.988975     Prob. Chi-Square(6) 0.5452 
     
          

Test Equation:    
Dependent Variable: RESID   
Method: Least Squares   
Sample: 1998M02 2007M12   
Included observations: 119   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -1.697350 3.056231 -0.555374 0.5798 

ln(FH) 0.019932 0.110721 0.180019 0.8575 
AGE/365 -0.006619 0.014153 -0.467677 0.6409 

ln(NET_COSTS(-1)) 0.102610 0.202948 0.505597 0.6142 
RESID(-1) -0.147179 0.226205 -0.650643 0.5166 
RESID(-2) -0.068558 0.120490 -0.568994 0.5705 
RESID(-3) 0.039727 0.098049 0.405171 0.6861 
RESID(-4) 0.180702 0.095306 1.896024 0.0606 
RESID(-5) 0.047861 0.097602 0.490372 0.6249 
RESID(-6) 0.044171 0.097831 0.451508 0.6525 

     
 

A-10 Net Cost Model Jarque-Bera Test for Normality 
 
 Null hypothesis is that the residuals come from a normal distribution.  The P-

Value of 0.907 associated with the Jarque-Bera statistic provides virtually no evidence 

against the null and so we fail to reject that the residuals are normally distributed.   
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Appendix C:  Summary of Regression Coefficients for All Models   

 

Summarized Regression Coefficients for MDS Specific Net Cost Models 
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Summarized Regression Coefficients for MDS Specific Charges Models 
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Summarized Regression Coefficients for MDS Specific Credits Models 
 

 
Summarized Regression Coefficients for Common Panel Net Cost Models  
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Summarized Regression Coefficients for Common Panel Charges Models  
 

 
Summarized Regression Coefficients for Common Panel Credits Models  
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The Air Force by month time series models that failed to pass either a test for 
heteroskedasticity or serial correlation and used robust standard errors include: 

1. B-52H net cost model 

2. C-5 net cost model 

3. F-15 net cost model 

4. B-1B charges model 

5. B-52H charges model 

6. C-5 charges model 

7. F-16C/D charges model 

8. B-1B credits model 

9. C-5 credits model 

10. F-15C/D credits model 

11. F-15E credits model 
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Appendix D:  Tests for Proportional Model FH Assumption 
 

MAJCOM by Year Level of Aggregation 
 

 FH 
 

S.E.* 
 

99% C.I. n 
Average Effect 0.72 0.07 0.55  -   0.90 184 

*robust standard errors estimated 

MAJCOM by Quarter Level of Aggregation 
 

MD FH 
 

S.E. 
 

99% C.I. n 
A-10 0.39 0.13 0.06  -   0.73 117 
C-5 0.53 0.09 0.29  -   0.77 77 

F-15C/D 0.49 0.20 -0.02  -   1.01 119 
F-15E** 0.29 0.16 -0.13  -   0.72 116 
F-16C/D 0.44 0.09 0.19  -   0.68 156 
KC-135 0.37 0.12 0.05  -   0.69 133 

*robust standard errors estimated 
**The F-15E coefficient only includes ACC and USAFE.  A Wald Test shows that the coefficient for       
the F-15E PACAF FH coefficient is still significantly different than 1 at the 0.01 level with a F-
statistic of 10.6 and (1, 109) degrees of freedom. 

 

MAJCOM by Month Level of Aggregation 
 

MD FH 
 

S.E.* 
 

99% C.I. n 
A-10 0.35 0.08 0.14  -   0.55 357 

B-52H 0.30 0.08 0.09  -   0.52 119 
C-5 0.28 0.06 0.12  -   0.44 235 

F-15C/D 0.44 0.08 0.22  -   0.66 357 
F-15E 0.41 0.09 0.18  -   0.64 352 

F-16C/D 0.36 0.07 0.17  -   0.55 476 
KC-135 0.29 0.07 0.11  -   0.46 238 

*robust standard errors estimated 
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Appendix E:  Summary of Forecast Accuracy for Net Cost and Charges-Credits 
Models 
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Appendix F:  Summary of Forecast Accuracy for Proportional and Non-
proportional Models 

 

 
  



100 
 

References 
 
Air Force Cost Analysis Improvement Group (AFCAIG), Cost per Flying Hour Process 

Guide, Nov 1999. 
 
Armstrong, Patrick D.  Developing an Aggregate Marginal Cost Per Flying Hour Model 

for Air Force’s F-15 Fighter Aircraft. MS Thesis, AFIT/GCA/ENV/06M-01. 
School of Engineering and Management, Air Force Institute of Technology (AU), 
Wright-Patterson AFB OH, March 2006 (ADA423137). 

 
Department of the Air Force.  Air Force Repair Enhancement Program (AFREP).  AFI 

21-123.  Washington:  HQ USAF/ILM, 3 October 2002.  
 
Diebold, F.X. and R.S. Mariano.  “Comparing predictive accuracy,”  Journal of Business 

and Economic Statistics, 13:  253-263, (July 1995). 
 
Faykes, Frank.  FY08 President’s Budget Rollout Brief.  Powerpoint.  

http://www.saffm.hq.af.mil/shared/media/document/AFD-070212-012.pdf.  5 
February 2007. 

 
Government Accountability Office. Air Force Operating and Support Cost Reductions 

Need Higher Priority. Washington DC: Government Printing Office. 
GAO/NSIAD- 00-165. August 2000. 

 
Government Accountability Office. Observations on the Air Force Flying Hour 

Program. Washington DC: Government Printing Office. GAO/NSIAD-99-165. 
July 1999. 

 
Granger, C.W.J. and P. Newbold.  “Spurious Regressions in Econometrics,” Journal of 

Econometrics, 2:  111-120, (1974).  
 
Greene, William H.  Econometric Analysis.  5th ediction, Upper Saddle River, New 

Jersey:  Pearson Education Inc. (2003). 
 
Habing, Brian.  “Transformation of Variables.”  Course supplement, Stats 516, Statistical 

Methods II.  Department of Statistics, University of South Carolina.  July 2004.   
 http://www.stat.sc.edu/curricula/courses/516/516s7p8sup.pdf.     
 
Harris, Richard and Robert Sollis.  Applied Time Series Modelling and Forecasting.  

West Sussex, England: John Wiley & Sons Ltd., 2003. 
 
Harvey, D.I., S.J. Leybourne, and P. Newbold.  “Testing the equality of prediction mean 

squared errors,”  International Journal of Forecasting, 13:281-291 (June 1997). 



101 
 

Hawkes, Eric M.  and Edward D. White.  “Empirical Evidence Relating Aircraft Age and 
Operating and Support Cost Growth.”  Journal of Cost Analysis and Parametrics.  
1:  31-44 (Fall 2008).   

 
Hawkes, Eric M. Predicting the Cost per Flying Hour for the F-16 using Programmatic 

and Operational Variables. MS Thesis, AFIT/GOR/ENC/05-01. School of 
Engineering and Management, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, June 2005 (ADA436138). 

 
Hildebrandt, Gregory G. and Man-bing Sze.  An Estimation of USAF Aircraft Operating 

and Support Cost Relations. Santa Monica, CA: RAND, May 1990 (N-3062-
ACQ). 

 
Hildebrandt, Gregory G.  Budget Estimating Relationships for Depot-Level Reparables in 

the Air Force Flying Hour Program.  Santa Monica, CA:  RAND, 2007 (MG-
355)  

 
Hu, Shu-Ping.  “The Impact of Using Log-Error CERS Outside the Data Range and Ping 

Factor,” National Society of Cost Estimating and Analysis Conference, June, 
2005. 

 
Im, So Kyung, M. Hashem Pesaran, and Yongcheol Shin.  “Testing for unit roots in 

heterogeneous panels,” Journal of Econometrics, 115:  53-74, (2003).    
 
Kennedy, Peter.  A Guide to Econometrics.  6th edition, Malden, MA:  Blackwell 

Publishing (2008).   
 
Kirby, Billy L.  Cost Per Flying Hour Analyst, Centralized Asset Management Program 

Office, Air Force Materiel Command, Wright-Patterson AFB OH.  Personal 
Interview.  2 July 2008. 

 
Laubacher, Matthew E.   Analysis and Forecasting of Air Force Operating and Support 

Cost for Rotary Aircraft. MS Thesis, AFIT/GCA/ENV/04M-05. School of 
Engineering and Management, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, March 2004 (ADA423137). 

 
Osborne, Jason W.  “Notes on the use of data transformations.”  Practical Assessment, 

Research & Evaluation, 8(6), (December 2002).   
 
Rose, Pat A. Jr. “Cost Per Flying Hour Factors: A Background and Perspective of How 

They Are Developed and What They Do,” Air Force Comptroller, 31-1:4-9 (July 
1997). 

 



102 
 

Slay, Michael F. and Craig C. Sherbrooke.  Predicting Wartime Demand for Aircraft 
Spares.  McLean, VA:  Logistics Management Institute, April 1997 
(AF501MR2). 

 
Smirnoff, James P. and Michael J. Hicks.  “The impact of acquisition factors and 

economic reforms on the cost of defense weapon systems.”  Review of Financial 
Economics, 17:3-13 (2008).   

 
Unger, Eric J. An Examination of the Relationship Between Usage and Operating and 

Support Costs for Air Force Aircraft.  Santa Monica, CA:  RAND, 2008.  (RGSD-
229).   

 
Van Dyk, Stefanie L.  Forecasting Flying Hour Costs of the B-1, B-2, and b-52 Bomber 

Aircraft.  MS Thesis, AFIT/GCA/ENV/08-M02.  School of Engineering and 
Management, Air Force Institute of Technology (AU), Wright-Patterson AFB 
OH, March 2008 (ADA483271).   

 
Vonglis, John G.  “Leadership Message.”  Excerpt from unpublished article. n. pag.  

http://www.saffm.hq.af.mil/.    
 
Wallace, John M., Scott A. Hauser, and David A. Lee. A Physics-Based Alternative to Cost-

Per-Flying-Hour Models of Aircraft Consumption Costs.  McLean, VA:  Logistics 
Management Institute, August 2000 (ADA387273). 

 
White, H. (1980).  “A heteroscedasticity-consistent covariance matrix estimator and a 

direct test for heteroscedasticity.” Econometrica, 48(4), 817−838. 
 
Woolridge, Jeffrey M.  Introductory Econometrics A Modern Approach.  3rd edition, 

Mason, Ohio:  Southwestern-Thomson Learning, 2006. 
 
Wynne, Michael W. and Michael T. Moseley.  The FY 2008 Air Force Posture 

Statement.  Excerpt from unpublished article:  http://armed-
services.senate.gov/statemnt/2007/March/Wynne-Moseley%2003-20-07.pdf.  20 
March 2007.  

   
  



103 
 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, 
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, 
VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply 
with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-
YYYY) 

26-03-2009 

2. REPORT TYPE  
 

Master's Thesis 

3. DATES COVERED (From – To) 
 

Jun 2008 - Mar 2009 
4.  TITLE AND SUBTITLE 
 
Cost Forecasting Models For the Air Force Flying Hour Program 

5a.  CONTRACT NUMBER 
5b.  GRANT NUMBER 
5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 
Hess, Tyler J., First Lieutenant, USAF 

5d.  PROJECT NUMBER 

5e.  TASK NUMBER 
5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
     
Air Force Institute of Technology 
Graduate School of Engineering and Management (AFIT/EN) 
2950 Hobson Way  
WPAFB, OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
AFIT/GCA/ENV/09- M 07 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
Mr. Billy L. Kirby, Civilian, USAF 
AFMC A4FC/CAM Cost Per Flying Hour Analyst 
4225 Logistics Avenue Bldg 262, Post19R 
WPAFB, OH 45433-7222 
(937) 257-3718 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
A4FC CAM 
 
11.  SPONSOR/MONITOR’S 
REPORT NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
13. SUPPLEMENTARY NOTES  

14. ABSTRACT  
The fiscally constrained environment in which the Air Force executes its mission places great emphasis on accurate 
cost estimates for planning and budgeting purposes.  Inaccurate estimates result in budget risks and undermine the 
ability of Air Force leadership to allocate resources efficiently.  This thesis evaluates the current method used by the 
Air Force and introduces new methods to forecast future Flying Hour Program costs.  The findings suggest the current 
forecasting method’s assumption of a proportional relationship between cost and flying hours is inappropriate and the 
relationship is actually inelastic.  Prior research has used log-linear least squares regression techniques to forecast 
Flying Hour Program cost, but has been limited by the occurrence of negative net costs in the underlying data.  This 
research uses time series and panel data regression techniques while controlling for flying hours, lagged costs, and 
age to create net costs models and an alternative model by separately estimating the two components of net costs 
which are charges and credits.  Finally, this research found neither the proportional, net costs, nor charge minus credit 
models is a superior forecaster.  As such, the models introduced in this research may be used as a cross check for the 
current method.   
15. SUBJECT TERMS 
Cost Per Flying Hour, Flying Hour Program, Budget Estimates, Forecasting Models 
16. SECURITY CLASSIFICATION 
OF: 

17. 
LIMITATION 
OF      
ABSTRACT 
 
UU 

18. 
NUMBER  
OF 
PAGES 
 
114 

19a.  NAME OF RESPONSIBLE 
PERSON 

Lt Col Eric J. Unger (AFIT/ENV) 
a. REPORT 
 

U 
b. ABSTRACT 
 

U 
c. THIS 
PAGE 
 
U 

19b.  TELEPHONE NUMBER (Include 
area code) 

(937) 255-3636 
Standard Form 298 (Rev. 8-98) 

Prescribed by ANSI Std. Z39-18 

 
Form Approved 
OMB No. 074-0188 

 


	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	I:  Introduction
	Background
	Purpose of This Study
	Research Questions.

	Chapter Summary

	II:  Literature Review
	Flying Hour Program Overview
	Estimating Flying Hours.
	Estimating CPFH Factors.
	The Air Force Repair Enhancement Program.

	Previous Work on CPFH/FH Program Forecasting Models
	Hildebrandt and Sze Create Cost Estimating Relationships for Operating and                 Support Costs and Its Various Components.
	Wallace, Houser, and Lee Predict Removals Using Physics Based Constructs.
	Slay and Sherbrooke Focus On Predicting Removals As a Function Of Sortie     Duration Instead Of Flying Hours.
	Laubacher, Hawkes, and Armstrong Each Attempt To Improve the Proportional  Model By Better Predicting CPFH Rates.
	Hildebrandt Revisits His Previous Work, Focusing on Depot Level Reparable Costs.
	Unger Updates Hildebrandt And Sze’s Research By Evaluating O&S Cost Drivers.
	Van Dyk Continues Unger’s Work, Focusing On DLR and Consumable Costs for The Air Force Bomber Fleet.

	Chapter Summary

	Chapter III:  Data Collection and Methodology
	Data Sources and Variables
	Dependent Variables:  Material Support Division (MSD) Fly DLR/Consumable Costs (Charges, Credits, and Net Costs)
	Independent Variables
	Data Aggregation
	Combining the Cost and Usage Databases
	Location Based Construct Validity Concerns

	Methodology
	Forecasting Accuracy
	Natural Logarithmic Variable Transformation
	Testing For Unit Roots

	Chapter Summary

	Chapter IV:  Analysis and Results
	Common versus Individual Airframe Flying Hour Program Cost Models
	Which Variables are Significant Predictors of Flying Hour Program Cost
	Evaluating the Appropriateness of the Proportional Model Specification
	Forecasting Performance of the Net Cost and Charges minus Credits Models
	Proportional versus Non-Proportional Model Forecasting Performance
	Chapter Summary

	Chapter V:  Conclusions
	Strengths, Limitations, and Policy Implications

	Appendix A:  Cost Allocation Mismatches for Majcom and Base Levels of Aggregation
	Appendix B:  Sample of Time Series Regression Diagnostic Tests
	A-10 Net Cost Model White Test for Heteroskedasticity
	A-10 Net Cost Model Breusch-Godfrey LM Test for Serial Correlation
	A-10 Net Cost Model Jarque-Bera Test for Normality

	Appendix C:  Summary of Regression Coefficients for All Models
	Summarized Regression Coefficients for MDS Specific Net Cost Models
	Summarized Regression Coefficients for MDS Specific Charges Models
	Summarized Regression Coefficients for MDS Specific Credits Models
	Summarized Regression Coefficients for Common Panel Net Cost Models
	Summarized Regression Coefficients for Common Panel Charges Models
	Summarized Regression Coefficients for Common Panel Credits Models

	Appendix D:  Tests for Proportional Model FH Assumption
	MAJCOM by Year Level of Aggregation
	MAJCOM by Quarter Level of Aggregation
	MAJCOM by Month Level of Aggregation

	Appendix E:  Summary of Forecast Accuracy for Net Cost and Charges-Credits Models
	Appendix F:  Summary of Forecast Accuracy for Proportional and Non-proportional Models
	References

